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Abstract. In steel fiber reinforced concrete, the random dispersion of discrete fibers in the cementitious 

matrix and the distinct lengths, cross sections and volumetric contents cause deviations in the global 

behavior of a given structure. Traditionally, the association of probabilistic and numerical approaches 

reproduces the variability effects in the material mechanical behavior. However, the accomplishment 

of these simulations is strongly dependent on statistical study of experimental tests. In recent years, 

computational intelligence techniques emerge as powerful tools for parameter identification and 

calibration in engineering. However, parameter sensitivity analysis is a predecessor stage required for 

applying these new concepts into an Artificial Neural Network (ANN). In this sense, this paper presents 

a sensitivity study of macroscale parameters in steel fiber reinforced concrete by using the Design of 

Experiments (DOE) methodology. This technique is an important method to analyze the influence of one 

or more parameters on the given output of the ANN. An experimental database available in literature 

provides the input data for the ANN: water-cement ratio, volumetric content, diameter and length of 

steel fibers. The parameter outputs are the Young modulus (E), tensile strength (ft) and fracture energy 

(G) of the material. Response surface plots are provided in order to identify the relevant experimental 

parameters for the description of the mechanical behavior of the composite predicted by the ANN. 

Thereby, sensitivity analysis in Artificial Intelligence methods becomes an attractive approach to verify 

the mechanical behavior of concrete, establishing the most suitable parameters that will generate a 

reliable neural network. 
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1  Introduction 

In Structural Engineering, several mathematical models are employed to model real-world 

phenomena. However, in most of the cases, these simulations can be highly complex, making it difficult 

to understand the relationships between the input and output parameters of a given model. In this sense, 

sensitivity analysis emerge as an essential tool for model building, especially for material behavior 

modeling. 
For computational simulations involving composite materials in a macroscale approach, the elastic 

properties (Young’s modulus and Poisson’s ratio), tensile strength and fracture energy need to be 

assessed in order to understand the material mechanical behavior. At this scale, there is no explicit 

representation of the heterogeneities such as fibers or aggregates in the finite element model and the 

required parameters for the analyses represent the combined effects of the cementitious matrix and steel 

fibers. Consequently, these simulations consider equivalent properties for material modeling. However, 

it is important to study which material parameters are truly relevant for the description of the mechanical 

behavior of the composite.  

Due to their excellent mechanical properties, fiber reinforced cement based materials have been 

widely used. The addition of randomly distributed short fibers in the brittle matrix can significantly 

reduce the brittleness of the composite material (Naaman, 1998; 2003; Congro et al., 2017; 2019). 

Considering the anisotropic behavior of the composite due to fiber random dispersion within the cement 

matrix, finite element simulations coupled to probabilistic analysis attempt to reproduce the nonlinear 

behavior of concrete after the first crack (Naaman et al., 1974; Karinsrki et al., 2016; Ríos et al., 2017; 

Congro et al., 2019). However, many numerical studies based on probabilistic methodologies are 

strongly dependent from experimental tests. This assessment can inspect the macroscale behavior of a 

given structural system; however, they are usually costly and time consuming. Some obstacles can also 

be included in this scenario, such as how to get the materials for each experiment or how to access the 

mechanical properties and reproduce specific loading conditions.  

In parallel, Artificial Intelligence (AI) has emerged as a new field for research and applications in 

many areas, such as knowledge and intelligent database systems in the last decades. According to Lu et 

al. (2012), the research in AI field has been developed since 1956 and wraps several disciplines in 

Science, such as Computer Science, Mathematics, Biology and Physics. This joint study is performed 

in order to reproduce the intelligent function of human brain. With the increasing advancement of 

computer technology and data processing during the last years, AI started to be a more practical field, 

strongly connected to problem-solving systems, especially in engineering applications. In this scenario, 

several studies have been performed by using those techniques, especially for complex problems that 

depend on professional expertise or experience (Lee & Mosalam, 2004; Sandemir, 2009; Naderpour et 

al., 2010; Arslan, 2010; Yuan et al., 2014; Babanajad et al., 2017). 

This paper proposes a parameter sensitivity analysis of an artificial neural network (ANN) by using 

the Design of Experiments (DOE) and Response Surface Methodology (RSM). The main goal is to 

evaluate the relationship between each input variable of the network and the mechanical parameter 

outputs to be used in finite element simulations. ANN is generated considering an experimental database 

collected from literature. Water-cement ratio, steel fiber length, diameter and volumetric content of steel 

fiber reinforced concrete in tensile tests gather the input data for the network. Giving those variables, 

concrete parameters under tensile behavior can be predicted, namely Young’s modulus, tensile strength 

and fracture energy of the material. Therefore, it is a valuable tool to predict the mechanical response of 

the composite, evaluating the most relevant input data for the neural network.  

2  Design of Experiments (DOE)  

Experiments are used to study the performance of processes and systems, and can be schematically 

represented by Figure 1. According to Montgomery (2013), a process is a combination of machines, 

methods, people, and resources that transforms an input into an output that has one or more observable 

response variables.  
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Figure 1. General model of a process (Adapted from Montgomery, 2013). 

 

The main goals of experiments are to determine which variables (factors) are most influential in 

the response y (Myers et al., 2004; Montgomery, 2013). Experiments often are related to several factors, 

and DOE emerges as a structured method for settling the relationship between factors and process 

outputs (Yoon, 2007). Hence, it is a good procedure for planning experiments and yields reliable 

conclusions. 

After running the experiments, it is possible to analyze the influence of each input parameter in the 

system response. Several DOE methods can be employed in order to study this behavior, and one of the 

most selected techniques is the response surface methodology (RSM). In other words, it is a collection 

of mathematical and statistical techniques for modeling and problem analysis in which the goal is to 

analyze the influence of input parameters for the given outputs.  

Response surface design methodology is often used to refine models after having determined 

important factors using screening designs or factorial designs; or especially if there is a suspect curvature 

in the response surface (Khuri & Cornell, 1996). In most engineering cases, outputs have to be designed 

with curvature to allow the quadratic effects of each independent variable.  

For example, consider an output variable 𝑦 that needs to be studied in function of variables 𝑥1 and 

𝑥2. If the expected response is denoted by 𝐸(𝑦) = 𝑓(𝑥1, 𝑥2) = 𝛾, then the surface is called response 

surface, represented mathematically by Equation 1.  

 

  𝛾 = 𝑓(𝑥1, 𝑥2)         (1) 

 

 In several RSM problems, the relationship between the response and the independent variables 

is unknown. In this way, the first step is to find a suitable approximation for the relationship between 𝑦 

and the independent variables. A low-order polynomial in some region of the independent variables is 

often employed, such as first or second-order models. Equation 2 presents the approximating function 

for second-order models, usually applied when there is a curvature in the system. 

 

𝑦 = 𝛽0 + ∑ 𝛽𝑖 𝑥𝑖 +𝑘
𝑖=1 ∑ 𝛽𝑖𝑖  𝑥𝑖

2 + ∑ ∑  𝛽𝑖𝑗  𝑥𝑖 𝑥𝑗 + 𝜀𝑘
𝑖=1      (2) 

 

Almost all RSM problems use one or both of these models. Myers et al. (2004) and Montgomery 

(2013) point out that, for a relatively small region, such as the one analyzed during this paper, they 

usually work well.  

In surface plot interpretation, when the border of the surface is horizontal (parallel to one of the 

axes), then there is no main effect. Each level of the factor affects the response in the same way, and the 

response mean is the same across all factor levels. On the other hand, when the line is not horizontal, 

then there is a main effect. Different levels of the factor affect the response differently. The steeper the 

slope of the line, the greater the magnitude of the main effect. 
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3  Methodology 

This paper proposes an Artificial Neural Network (ANN) to predict parameters of direct tensile 

tests of cementitious composites reinforced with randomly dispersed straight steel fibers. A parameter 

sensitivity study was conducted using the Design of Experiment (DOE) method. Firstly, experimental 

results from literature are collected to generate the network input data. Secondly, ANN is trained 

considering specific configurations and architecture, returning the mechanical parameters of the 

composite material: Young’s modulus, tensile strength and fracture energy. These are the most relevant 

parameters to be included in the finite element numerical simulations for direct tensile tests modeling. 

Then, a sensitivity analysis of the network is performed by using DOE and RSM. Response surface plots 

are provided in order to verify the influence of each parameter in the macro behavior of concrete. Figure 

2 presents a workflow for the analyses developed during this study. 

 

 
 

Figure 2. Workflow for sensitivity analysis developed during this paper. 

 

As a quasi-brittle material, Young’s modulus, tensile strength and fracture energy are the 

necessary input variables for predicting the global behavior of concrete in tension in a FEM model. 

Tensile strength is increased in this particular case due to the presence of fibers. On the other hand, 

fracture energy is related to fracture mechanisms in concrete, governing the material post-crack phase 

after matrix first crack.   

Considering the experimental database, a neural network with 90 samples was constructed with 

the following input data: water-cement ratio, steel fiber volumetric content (%) and steel fiber length 

and diameter (mm). Input data was introduced in the ANN after a linear normalization procedure. The 

samples were randomly divided in three distinct groups: 70% for training and 30% for validation and 

testing. This study uses the multilayer perceptron backpropagation algorithm to estimate the correct 

targets. Given the random variability from Artificial Intelligence methods, several rounds were 

performed. The number of neurons, hidden layers and the training algorithm were set after multiple 

Experimental Data 

collected from literature

Construction of an 

artificial neural network 

ANN response is analyzed 

by DOE methodology 

Sensitivity analysis of ANN are 

verified by RSM 



CONGRO, M.; PEREIRA, F. L. G.; SOUZA, L. M. S.; ROEHL, D. 

CILAMCE 2019 

Proceedings of the XL Ibero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC, 

Natal/RN, Brazil, November 11-14, 2019 

rounds and previous studies of ANN architectures and training configurations. The criteria for network 

selection is the highest value of global regression (R²). All simulations and tests for the artificial neural 

network stage were performed by Deep Learning Optimization Toolbox in MATLAB ®. Table 1 

summarizes the network architecture and their respective configurations. In addition, Figures 3(a) and 

3(b) present the global regression value for the selected ANN and the schematic architecture of the 

network. 

 

Table 1. Configurations for the selected neural network. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3. (a) Global regression value for the ANN; (b) ANN architecture. 

 

RSM analyses were carried out in Minitab 18 ® software. Default configuration of statistical 

analysis considers a 95% confidence interval for the simulations, with the adoption of a central 

circumscribed composite design (CCC). Table 2 displays the complete matrix for the Box-Wilson 

central composites design in coded factor settings. In addition, Table 3 indicates the lower and upper 

bounds for each input parameter of the ANN database, used as model for the DOE methodology.  

 

Table 2. Complete matrix for central circumscribed composite design (CCC). 
 

OrdemPad A B C D 

1 0 0 0 0 

2 0 0 -2 0 

3 1 -1 1 -1 

4 1 -1 1 1 

ANN Architecture and Configurations 

Number of Neurons 18 

Training Algorithm Trainlm 

Transfer Function Tansig 

Number of Hidden Layers 1 

(a) 

(b) 
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5 0 0 0 -2 

6 1 -1 -1 -1 

7 0 0 0 0 

8 1 1 1 -1 

9 -1 -1 -1 -1 

10 0 0 0 0 

11 -1 1 1 1 

12 1 1 -1 -1 

13 1 1 1 1 

14 0 -2 0 0 

15 -1 1 1 -1 

16 -1 1 -1 -1 

17 0 0 2 0 

18 1 -1 -1 1 

19 -1 -1 1 1 

20 2 0 0 0 

21 0 2 0 0 

22 0 0 0 0 

23 -1 1 -1 1 

24 0 0 0 0 

25 0 0 0 0 

26 0 0 0 0 

27 -1 -1 -1 1 

28 -1 -1 1 -1 

29 0 0 0 2 

30 1 1 -1 1 

31 -2 0 0 0 

 

Table 3. Upper and lower bounds for the ANN model employed in the DOE methodology. 

 

 

 

 

 

 

 

 

 

As previously reported in this paper, a sensivity analysis of each ANN input parameter is 

developed by using a DOE methodology, generating surface response plots to compare the relationship 

between each input and output variable: water-cement ratio-fiber volumetric content x Young Modulus, 

fiber length-fiber diameter x Young’s modulus; water-cement ratio-fiber volumetric content x tensile 

strength, fiber length-fiber diameter x tensile strength; water-cement ratio-fiber volumetric content x 

fracture energy, and fiber length-fiber diameter x fracture energy.  

It is important to point out that the surface plots represent the tensile behavior of steel fiber 

reinforced concrete with random distribution in the cement matrix inside the bounds presented in Table 

3. In this way, they do not represent the behavior of concrete in the entire space of independent variables, 

once the database is restricted to specific boundaries. Thus, considering this relatively small region of 

analysis, the adoption of a second-order polynomial for DOE/RSM methodology is satisfactory for the 

problem. Finally, Figure 4 presents how data points from the ANN database are distributed in the 

parameter input space. 
 

Bounds/ Input 

Parameters 

Water-

Cement 

Ratio 

 (-) 

Fiber 

Volumetric 

Content 

(%) 

Fiber 

Length 

(mm) 

Fiber 

Diameter 

(mm) 

Upper Bound 0.65 2.00 60 1.6 

Lower Bound 0.16 0.10 5 0.2 
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Figure 4. Distribution of ANN data points in the parameter input space. 

 

4  Results and Discussion 

As previously mentioned, the sensitivity analysis developed in this paper investigates the influence 

of water-cement ratio, steel fiber length, diameter and volumetric content in the macro behavior of steel 

fiber reinforced concrete. In practice, these parameters are assessed in a great number of experimental 

tests. Material behavior inferences in macroscale are endorsed by verifying how these variables impact 

the mechanical properties of concrete, such as elastic properties, tensile strength and fracture energy of 

the material. 

The statistical analysis of the ANN model using DOE allows the generation of response surface 

plots that confirm the presence or absence of influence of each input parameter in the system response. 

The results of the sensitivity analysis are compared with literature reports, validating the DOE response 

surface plot. 

4.1 Young’s Modulus 

Figures 5 and 6 present the response surface plots considering Young’s modulus as the analysis 

output. Water-cement ratio and steel fiber volumetric content are the independent variables in the plot 

of Figure 5, while steel fiber length and diameter are the independent parameters in the plot of Figure 6. 

 

Figure 5. Response surface plot for Young’s modulus considering water-cement ratio and 

steel fiber volumetric content as independent variables. 
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Figure 6. Response surface plot for Young modulus considering fiber length and diameter as 

independent variables.  

 

According to Figures 5 and 6, the relationships between Young’s modulus and all four input 

parameters is not constant, suggesting that they are significant for this output. Young’s modulus 

decreases quadratically with the water-cement ratio, in agreement with response surface. This can be 

confirmed by previous research of Gao et al. (2017), Figueiredo (2011) and Bentur & Mindess (2007). 

In addition, Young’s modulus presents a linear dependence with the steel fiber volumetric content, as 

also indicates Figure 7. According to Neves & Almeida (2005), the elasticity modulus shows a tendency 

to decrease as fiber content increases.  

Figure 6 points out the increase in elastic modulus with steel fiber length and diameter until a 

specific point of each parameter. However, as reported by Góis (2010) and Abbas et al. (2014), fiber 

aspect ratio (i.e, the quotient between fiber length and diameter) does not change expressively the elastic 

modulus. In their respective works, distinct relationships between Young’s modulus-fiber lengths are 

verified, which leads to plural behaviors of fiber reinforced concrete. In this sense, it is necessary to 

consider each mix properties and possible additions in order to make inferences about the material 

mechanical response in this case.  

4.2 Tensile Strength 

Figures 7 and 8 display the response surface plots considering tensile strength as the analysis output. 

Water-cement ratio and steel fiber volumetric content are the independent variables in the plot of Figure 

7, while steel fiber length and diameter are the independent parameters in the plot of Figure 8. 

 
 

Figure 7. Response surface plot for tensile strength considering water-cement ratio and steel fiber 

volumetric content as independent variables. 
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Figure 8. Response surface plot for tensile strength considering steel fiber length and diameter as 

independent variables. 

 

From previous response surface plots, it is possible to infer that all input parameters affect the 

tensile strength behavior of the composite, within the analyzed ranges. According to Figure 8, tensile 

strength starts increasing until a fiber volumetric content, and then decreases from this point on. The 

random dispersion of steel fibers in the cement matrix is a relevant factor that leads to the reduction of 

tensile strength after a specific fiber content. This observation is also supported by some authors in 

literature, such as Bhat & Khan (2018) and Beigi et al. (2013). DOE response surface also points out 

that tensile strength rises with water-cement ratio. However, Bentur & Mindess (2007) support that 

tensile strength decreases with water-cement ratio. This contradictory behavior is due to specific points 

in the ANN database used for training. In mixtures with low values of water-cement ratio, the 

workability was affected by the presence of coarse aggregate, generating the interlock between 

aggregate and steel fibers (Zhang et al., 2018 apud Liu et al., 2016; Ma et al., 2004). Other data points 

also present small values of tensile strength (near 1 MPa, for example). This can suggest that, for some 

input parameters, the tensile strength drops to values close to zero, but not exactly this value. 

In Figure 8, it is verified that tensile strength rises with fiber diameter and fiber length growth. 

After a specific value, the tensile strength declines when both parameters decrease. Previous 

experimental research of Góis (2010) and Abbas et al. (2014) endorse this comment about steel fiber 

reinforced concrete, although mixture properties and test configurations impact the experimental results. 

 

4.3 Fracture Energy 

Figures 9 and 10 present the response surface plots considering fracture energy as the system 

output. Water-cement ratio and steel fiber volumetric content are the independent variables in the plot 

of Figure 9, while steel fiber length and diameter are the independent parameters in the surface of Figure 

10. 
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Figure 9. Response surface plot for fracture energy considering water-cement ratio and steel fiber 

volumetric content as independent variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Response surface plot for fracture energy considering steel fiber length and diameter as 

independent variables. 

 

 According to Figure 10, there is an increment in the fracture energy with respect to fiber 

volumetric content. This behavior is also discussed in previous works (Figueiredo et al., 2000; Kim et 

al., 2010; Figueiredo, 2011), since a greater number of fibers will be inserted in the cement matrix. In 

direct tensile tests of steel fiber reinforced specimens, load carrying capacity is directly proportional to 

fiber content (Naaman, 2018). On the other hand, as water-cement ratio increases, fracture energy values 

decline. Beigi et al. (2013) and Han et al. (2019) support these observations in their respective works in 

steel fiber reinforced concrete experimental analyses. 

Fiber length and diameter do not present a constant relationship with fracture energy parameter, 

since the DOE surface presents a curvature. Figueiredo (2011) conducted an experimental analysis 

where fracture energy increases with the fiber length up to a critical length at a specific fiber volumetric 

content; for greater values the fracture energy decreases. Assessing fiber diameter-fracture energy 

interaction, Figueiredo (2011) confirms that the fracture energy reduces as fiber diameter decreases up 

to a specific diameter. Beigi et al. (2013) also come to the same results after comparing those variables 

in experimental procedures carried out on steel fiber reinforced concrete. 
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5  Conclusions  

This study carried out a sensitivity analysis with the primary goal of verifying which experimental 

variables are relevant for the mechanical response of steel fiber reinforced concrete predicted by an 

artificial neural network (ANN). Sensitivity analysis is an important stage for developing numerical 

models, especially when experimental tests include a great number of parameters. Design of 

Experiments (DOE) methodology was employed to assess system sensitivity. An experimental database 

of tensile experimental tests available in literature with discrete straight steel fibers in random dispersion 

in the cement matrix was considered for the generation of an ANN able to predict the mechanical 

parameters of fiber reinforced concrete, such as Young modulus, tensile strength and fracture energy. 

Water-cement ratio, fiber length, diameter and volumetric content gather the input data for the artificial 

intelligence method. Next, a statistical analysis of the ANN was performed by a DOE methodology.  

Minitab ® software carried out all simulations with a Central circumscribed composite design (CCC) 

and a range of confidence of 95%. Response surface plots considering a second-order model were 

generated in order to verify which input parameters of the network affect the mechanical behavior of 

the composite, analyzing Young’s modulus, tensile strength and fracture energy outputs. 

The results show that water-cement ratio, fiber length, fiber diameter and steel fiber volumetric 

content have an impact in Young modulus, tensile strength and fracture energy in steel fiber reinforced 

concrete. The response surface methodology (RSM) provided surfaces with distinct curvatures 

indicating the effects of each of input parameters in the system response. Finally, it is concluded that 

these variables are relevant for modeling the mechanical behavior in traction of fiber reinforced 

concrete. In addition, the DOE methodology can be an interesting tool to perform parameter sensitivity 

analysis in fiber reinforced cement-based materials field. This stage is essential to investigate and model 

the mechanical behavior of composites.  
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