
MULTI-OBJECTIVE TRUSS STRUCTURAL OPTIMIZATION CONSIDERING SIZE,
SHAPE AND TOPOLOGY DESIGN VARIABLES SIMULTANEOUSLY

José Pedro Gonçalves Carvalho1
Afonso Celso de Castro Lemonge2
jose.carvalho@engenharia.ufjf.br
afonso.lemonge@ufjf.edu.br
1Civil Engineering Program - Federal University of Rio de Janeiro
Rua Horácio Macedo, Bloco G, 2030 - 101, 21941-450, Rio de Janeiro/RJ, Brazil
2Department of applied and computational mechanics - Federal University of Juiz de Fora
Rua José Lourenço Kelmer s/n, 36036-900, Juiz de Fora/MG, Brazil
Patrícia Habib Hallak2

Cláudio Horta Barbosa de Resende3
Beatriz de Souza Leite Pires de Lima1
patriciahallak@yahoo.com
claudio.horta@engenharia.ufjf.br
beatriz@poli.ufrj.br
3Postgraduate Program of Civil Engineering - Federal University of Juiz de Fora
Rua José Lourenço Kelmer s/n, 36036-900, Juiz de Fora/MG, Brazil

Abstract. Structural multi-objective optimization problems are common in real-world problems of En-
gineering field where one or more objective functions may be considered and desired to be optimized. In
general, these functions are conflicting, leading to complex optimization problems. This paper analyses
the multi-objective structural optimization problems considering the weight minimization (or volume)
with the compliance or the maximum nodal displacement. The constraints refer to the allowable ax-
ial stresses in the bars. Several experiments are analyzed in this paper, presenting their Pareto-fronts
showing the non-dominated solutions. The structural optimization problems consider sizing, shape, and
topology design variables simultaneously, and they can be continuous, discrete, or mixed. One of the
most important steps, after obtaining the Pareto curve, is the definition of which solution or solutions will
be considered after obtaining the Pareto curve. This task is not trivial, and a Multi-Tournament Decision
method is applied to extract the solutions from the Pareto based on Decision Maker preferences. The
search algorithm adopted here is a modified version of the Differential Evolution called Third Evolution
Step Differential Evolution (GDE3).

Keywords: Multi-objective Structural Optimization, Differential Evolution, Multi-Tournament
Decision Method
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1 INTRODUCTION

Structural optimization problems, common in engineering challenges, are often composed of con-
flicting objective functions, which leads to multi-objective optimization problems. For example, mini-
mize the final weight of the structure is an opposite problem as minimize it’s displacements since mini-
mize the weight implies on stiffness loss. Independent of the nature of the optimization problem (mono
or multi-objective), in almost all of them, there will always be constraints that must be satisfied (i.e.,
maximum displacements, maximum stresses, etc.).

Simultaneously sizing and shape optimization with static-related and dynamic-related constraints is
a non-linear task that can leads to complicated and non-intuitive solutions. Including topology on this
problems, the non-linearity and complexity rise significantly, leading to local optimum that can be seen
on the Pareto fronts, i.e., these curves may be composed by multiple “sub-Pareto” that represents these
different topologies.

This paper deals with sizing, shape, and topology simultaneously optimization on well-established
structures found on literature. Most of these problems are based on mono-objective formulations and
contemplates only static or dynamic-related constraints. In this sense, this work proposes as a novelty a
multi-objective approach with both combined static and dynamic-related constraints. The results of the
multi-objective optimization are analyzed via well-known metrics. A Multicriteria Tournament Decision
(MTD) Method (proposed by Parreiras and Vasconcelos [1]) to extract the solutions from the Pareto
fronts are adopted in this paper. The optimization algorithm used is the Differential Evolution (DE)
(proposed by Kukkonen and Lampinen [2]) coupled to the Adaptative Penalty Method (APM) (proposed
by Barbosa and Lemonge [3]).

Surveys of the latest developments considering meta-heuristics for solving structural design prob-
lems can be found in in Zavala et al. [4] and Barbosa et al. [5], respectively. In the following refer-
ences detailed discussion on strategies, methods, approaches, formulations, etc, to solve multi-objective
structural optimization with several type of objective functions and constraints are presented: Coello
et al. [6], Kalyanmoy [7], Greiner et al. [8], Noilublao and Bureerat [9, 9], Greiner et al. [10], Su et al.
[11], Richardson et al. [12], Greiner and Hajela [13], Kaveh and Laknejadi [14], Hosseini et al. [15], An-
gelo et al. [16], Assimi et al. [17], Tejani et al. [18], Mokarram and Banan [19], Vargas et al. [20], Tejani
et al. [21], Kaveh and Mahdavi [22]. Remarking that this paper does not attempt to describe on details
each one of these references.

The remainder of the paper is organized as follows: section 2 defines the multi-objective structural
optimization Problem; section 3 presents a synthesis of the Third Evolution Step of Generalized Differ-
ential Evolution (GDE3) and the metrics used to evaluate the performance of the GDE3 are presented in
section 4; a multicriteria decision making is used to define an extraction method of preferred solutions
from the Pareto front and it is presented in Section 5; the computational experiments are discussed in
Section 6, and, finally, the conclusions and future work are presented in Section 7.

2 MULTI-OBJECTIVE STRUCTURAL OPTIMIZATION PROBLEM

The multi-objective structural optimization problem presented in this paper refers to find a set of
decision variables x = (x1, . . . , xn), that correspond to the size, shape, and layout design variables of
truss structures, and written as:

min of1(x) and max of2(x)

s.t. structural constraints (1)

where of1(x) and of2(x) are the conflicting object functions, and the constraints are the maximum nodal
displacements, axial stresses, natural frequencies of vibration or elastic critical loads concerning the
global stability.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019



José P. G. Carvalho, Afonso C. C. Lemonge, Patrícia H. Hallak, Cláudio H. B. Resende, Beatriz S. L. P. Lima

Three sets of computational experiments are discussed in this paper where the weight W (x) of the
structure is always the first objective function to be minimized and written as:

W (x) =

N∑
i=1

ρAiLi (2)

where ρ is the specific mass of the material and Ai and Li are the cross-sectional areas and the length of
the i-th bar of the structure, respectively. The number of bars of the structure is denoted by N .

The sizing design variables are denoted by x = {A1, A2, ..., AN , Xi, Yi, Zi}, whereAi are the sizing
design variables concerning the cross-sectional areas of the bars (continuous or discrete) and Xi, Yi, Zi
are the shape design variables (continuous).

1. The first multi-objective truss structural optimization is written as:

min W (x) and max f1(x)

s.t. σi(x) ≤ σ

uj(x) ≤ u

λ1(x) ≥ λ

(3)

where f1(x) is the first natural frequency of vibration, σi(x) is the axial stress at the i-th bar,
uj(x) is the displacement at the j-th node and λ1(x) is the smallest load factor with respect to the
maximum elastic critical load able to be applied to the structure.

2. The second multi-objective truss structural optimization is written as:

min W (x) and max λ1(x)

s.t. σi(x) ≤ σ

uj(x) ≤ u

f1(x) ≥ f

(4)

where λ1(x) is the smallest load factor with respect to the maximum elastic critical load able to
be applied to the structure, uj(x) is the displacement at the j-th node and f1(x) is the first natural
frequency of vibration.

3. The third multi-objective truss structural optimization is written as:

min W (x) and min umax(x)

s.t. σi(x) ≤ σ

f1(x) ≥ f

λ1(x) ≥ λ

(5)

where umax(x) is the maximum nodal displacement of the structure, σi(x) is the axial stress at the
i-th bar and λ1(x) is the smallest load factor with respect to maximum elastic critical load able to
be applied to the structure.

In the problem formulations the constraints are normalized , such as:

uj(x)

ū
− 1 ≤ 0, 1 ≤ j ≤ mu, (6)

σi(x)

σ̄
− 1 ≤ 0, 1 ≤ i ≤ mσ, (7)
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1− fl(x)

f̄
≤ 0, 1 ≤ l ≤ mf (8)

1− λl(x)

λ̄
≤ 0, 1 ≤ l ≤ mλ (9)

where mu is the number of degree of freedom of the structure, mσ = N is the total number of bars,
mf is the total number of constrained natural frequencies of vibration and mλ is the total number of
constrained load factors of the structure. The allowable displacements, stresses, natural frequency of
vibration and load factor are defined by ū, σ̄, f̄ and λ̄, respectively.

The nodal displacements {u} are obtained by the equilibrium equation for a discrete system of bars,
which is written as:

[K] {u} = {p} (10)

where [K] is the stiffness matrix and {p} are the load components Bathe [23].
The natural frequencies of vibration are obtained by the evaluation of the eigenvalues of the matrix[

(f2mf × [M ]) + [K]
]

(11)

where [M ] is the mass matrix and fmf are the equivalent eigenvalues with respect to the mf natural
frequencies of the structure Bathe [23].

In the same way, the load factors λ concerning the global stability are obtained by the evaluation of
the eigenvalues of the matrix

[[K] + λmλ [KG]] (12)

where [KG] is the geometric matrix of the structure and λmλ are the equivalent eigenvalues concerning
themλ load factors of the structure. The lowest value λcr of λmλ gives the buckling load factor or critical
load factor for the structure (see McGuire et al. [24]).

3 THE THIRD EVOLUTION STEP OF GENERALIZED DIFFERENTIAL EVOLU-
TION (GDE3)

Differential Evolution (DE) was proposed by Storn and Price [25, 26] for single-objective optimiza-
tion problems and The Third Evolution Step of Generalized Differential Evolution (GDE3), proposed
by Kukkonen and Lampinen [2], extended the DE for constrained multi-objective optimization problems.
The GDE3 starts randomly generating an initial population and improves it using DE’s selection, muta-
tion, and crossover operations. These steps are detailed bellow and use the crossover rate (CR ∈ [0, 1]),
the mutation factor (F ∈ R) and the population size (N ) as parameters.

Let PG be a population of N decision vectors xi,G in generation G, where i ∈ {1, 2, 3, . . . , N} is a
vector index. Each xi,G of the population in generation G is a n-dimensional vector and xj,i,G is its j-th
component (j ∈ {1, 2, 3, . . . , n}).

Then, a decision vector xi,G creates the corresponding trial vector ui,G through mutation and crossover
operations Storn [27].

After the mutation and crossover operations, the trial vector ui,G is compared to the decision vector
xi,G using the constraint domination concept. A vector x dominates a vector y (denoted by x �c y) if
one, and only one, of the following conditions is true:

1. both are unfeasible and x � y in the constraint function violation space.
2. x is feasible and y is unfeasible.
3. x and y are feasible and x � y in the objective function space.

As a result, the trial vector ui,G is selected to replace the decision vector xi,G in the next generation PG+1

(population in generation G + 1) if ui,G �c xi,G. If xi,G �c ui,G, ui,G is discarded and xi,G remains in
the population. Otherwise, both are included in PG+1.

The size of the population is reduced using an elitist method when the size of PG+1 is greater than
N . This elitist method in GDE3 is based on the Non-dominated Ranking and Crowding Distance, two
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well-known schemes presented in NSGA-II (Deb et al. [28]). The Non-dominated Ranking scheme is
used to define the non-domination levels and Crowding Distance is adopted to measure the diversity of
solutions.

The size of the population PG+1 is reduced to N as follows: According to the Non-dominated
Ranking scheme PG+1 is sorted, generating the setsRank1,Rank2, . . . ,Rankd, (i.e., PG+1 = Rank1∪
Rank2 ∪ · · · ∪ Rankd). Given D, the smallest integer such that the size of the set Paux = Rank1 ∪
Rank2∪· · ·∪RankD is greater or equal to N . When D is equal to the size of Paux, then PG+1 = Paux.
Otherwise, PG+1 is composed by the elements in Paux, but after removing the candidate solutions from
RankD with the smallest Crowding Distance values until PG+1 has N elements. In both cases the
solutions in RankD+1, . . . , Rankd are discarded. More details on the Crowding Distance and the elitist
method can be found in Vargas et al. [20], Deb et al. [29].

The Adaptive Penalty Method (APM) proposed by Barbosa and Lemonge [30] is adopted in this
paper to handle the constraints. From the feedback of the evolutionary process, the method automatically
sets a higher penalty coefficient on those constraints that seem to be more difficult to satisfy.

4 PERFORMANCE METRICS

It is often impossible to know the Pareto optimal set, in multi-objective optimization Nicoară [31].
There are several metrics proposed in the literature to evaluate the performance of a MOEAs, and some
of them can be found in references Deb [32] Nicoară [31] Vargas et al. [33]. The performance metrics
used in this paper are the Empirical Attainment Function and hypervolume. The notion of attainment
function was first introduced by Fonseca and Fleming [34] and evaluates the distribution of a random non-
dominated point by providing information about the probability of a given point is weakly dominated.
This probability can be estimated from several runs of an algorithm. The EAF can be estimated as
Grunert da Fonseca et al. [35].

αn(z) =
1

n

n∑
i=1

bi(z) (13)

where z ∈ Rd and b1(z), ..., bn(z) are n realizations of the attainment indicator bx(z).
In López-Ibánez et al. [36] is developed a tool for graphical analysis of the EAF3. Figure 1 shows

three EAF curves (best, median, and worst cases) obtained by 10 independent runs of a given MOEA on
a problem for two objective functions Carvalho et al. [37]. The best curve delimits the region dominated
by all non-dominated solutions obtained in the 10 runs. The median EAF curve represents 50% of the
attainment surface. Finally, the worst curve bounds the region dominated by any non-dominated solution
found by the search technique in the 10 runs. Details about EAF code can be found in Fonseca and
Fleming [34] and Coello et al. [6].

The Hypervolume (Zitzler and Thiele [38]) provides a qualitative measure of convergence as well
as diversity in a combined sense. It allows an easy comparison between the results of different multi-
objective algorithms, by assigning a real value to a set of points. Mathematically, according to (Deb
[32]), for each solution i ∈ Q, a hypercube vi is obtained with a reference point W and the solution i as
the diagonal corners of the hypercube. The reference point can simply be found by constructing a vector
of worst objective function values. Thereafter, an union of all hypercubes is found and its hypervolume
(HV) is calculated

HV = volume (∪|Q|
i=1vi) (14)

3http://lopez-ibanez.eu/eaftools
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Figure 1. Example of the EAF curves (best, median and worst cases) Carvalho et al. [37]

5 THE MULTICRITERIA DECISION MAKING

After obtaining the Pareto fronts, a nontrivial task refers to the choice of which solution should be
selected by the Decision Maker (DM). One way to do this, for example, is the definition of a preference
interval that can even be explored in a new multi-objective analysis in this range.

However, it is possible to establish criteria defining weights (importance) for each objective and
through these values, establish comparison scenarios (Parreiras and Vasconcelos [1], Angelo et al. [16]).
On the other hand, the definition of these weights may also not be a trivial task Zhang et al. [39]. Al-
though it is possible to use a strategy capable of indicating the preferred solutions from the weights
defined by the DM. In this paper a Multicriteria Decision Maker (MCDM) is adopted to illustrate differ-
ent scenarios defined by the DM to extract solutions from the Pareto frontier.

According to their objectives and preferences (weights) established by the Decision Maker, the
MCDM establishes a Multi Tournament Decision Method which is a tournament-based method that
ranks the best and the worst possible solutions in the Pareto frontier In this sense, a function R(a)
is introduced returning a global metric or preference of solution a when compared with others in the
Pareto. It is necessary to give a criterion defined by the DM, and each solution is compared to the others
in the Pareto front, by definition of the function R(a). After that, a tournament is performed introducing
a function ti(α,A) that returns the number of times that solution a wins the tournament when compared
with another solution b, where A is the whole set of solutions of the Pareto. The function Ti(α,A) is
written as:

Ti(α,A) =
∑

∀b∈A,a 6=b

ti(a, b)

(|A| − 1)
, (15)

where ti(a, b) is given by:

ti(a, b) =

 1, if fi(b)− fi(a) > 0,

0, otherwise
(16)

After the tournament, each solution has indicators such as scores provided by function Ti(a,A) informing
its performance compared to the other solutions of setA. These scores are aggregated in the rankingR(·)
considering all the criteria and their respective weights wi, where Zhang et al. [39]:

R(a) =

(
m∏
i=1

Ti(a,A)wi

)1/m

(17)
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R(a) = min [Ti(a,A)w1 , · · ·, Ti(a,A)wm ] (18)

The values for each wi have to be set by the DM according to the importance defined for each one, where
wi > 0 for i = 1, · · ·,m, and

∑m
i=1wi = 1. The scores defined by R(a) provide a measure of preference

of a solution a in comparison with a solution b, such as:
• if R(a) > R(b), then a is preferred to b;
• if R(a) = R(b), then a is indifferent to b;

A pseudo-code for this tournament-based method is presented in Parreiras and Vasconcelos [1].

6 COMPUTATIONAL EXPERIMENTS

In this section, two well-know truss structures found in the literature are analyzed: the 10-bar and
the 52-bar. Results of the multi-objective optimization, as well as extraction of desired structures from
Pareto fronts, are presented. Information about mesh, materials, and boundary conditions for each truss
are found in respective problem’s definitions.

Regarding the MTD extraction methodology, three scenarios are defined:
• s1 : w1=0.3 andw2=0.7 (meaning that Decision Maker sets 30% of importance to the first objective

function and 70% of importance to the second objective function);
• s2: w1=0.5 and w2=0.5 (meaning that Decision Maker sets equal 50% of importance to both of the

objective functions);
• s3: w1=0.7 andw2=0.3 (meaning that Decision Maker sets 70% of importance to the first objective

function and 30% of importance to the second objective function);

6.1 The 10-bar truss

This experiment is a well-known problem found in literature corresponding to the 10-bar truss
shown in Fig. 2. For this experiment, 10 sizing design variables are considered corresponding to each
cross-sectional area of the bars, with values varying continuously from 0 to 33.5 in 2. For shape opti-
mization, nodal coordinates of nodes 1, 3, and 5 are free to move between 180 and 1000 in, leading to 3
shape design variables. Therefore, there is a total of 13 design variables. A nonstructural mass of 1000
lbs is attached at each free node.

When the natural frequencies are set as constraints, the limits are f1 ≥ 7 Hz, f2 ≥ 15 Hz and f3 ≥20
Hz. For nodal displacements, the maximum allowable value is equal to 2 in. For stability analysis, the
minimum elastic critical load factor must be greater than 1.0. Also, there are constraints for stresses
on the bars: both tension or compression stresses of each bar are bounded by 25 ksi. The density of
the material is 0.1 lb/in3, Young’s modulus is E = 104 ksi and vertical downward loads of 100 kips are
applied at nodes 2 and 4.

For the multi-objective structural optimization problem, 3 cases are considered:
• #1 - weight minimization along with the sum of the first three natural natural frequencies of

vibration;
• #2 - weight minimization along with maximum nodal displacement minimization;
• #3 - weight minimization along with elastic critical load maximization;
The obtained Pareto curves are shown in Figures 3 to 5 and corresponding EAF’s and hypervolumes

are shown in Figures 6 to 8. Figure 9 shows the Pareto fronts for the three cases analyzed in the 10-bar
truss, at left sides, and right sides, their respective extracted solutions according to the preferences of the
Decision Maker. Table 1 shows the design variables and constraints of the solutions of the 10-bar truss
extracted from Pareto fronts according to MTD Method.
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Figure 2. The 10-bar truss.
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Figure 6. EAF obtained for case #1 of 10-bar
truss, HVbest = 1, HVmedian = 0.97274 and
HVworst = 0.72539.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019



José P. G. Carvalho, Afonso C. C. Lemonge, Patrícia H. Hallak, Cláudio H. B. Resende, Beatriz S. L. P. Lima

2000 3000 4000 5000 6000 7000 8000

Weight (kg)

0.01

0.015

0.02

0.025

0.03

0.035

0.04

f1
+
f2

+
f3

 (
H

z
)

worst

median

best

Figure 7. EAF obtained for case #2 of 10-bar
truss, HVbest = 1, HVmedian = 0.97158 and
HVworst = 0.83968.
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Figure 8. EAF obtained for case #3 of 10-bar
truss, HVbest = 1, HVmedian = 0.97063 and
HVworst = 0.92475.

Table 1. Design variables and constraints of the solutions of 10-bar truss extracted from Pareto fronts
according to MTD Method. The cross-sectional Ai are given in cm2 and Yi coordinates are given in
meters.

Case

1 2 3

Scenario Scenario Scenario

dv 1 2 3 1 2 3 1 2 3

A1 216.1286 174.6373 148.9833 216.1286 216.1286 212.7174 176.5309 165.3551 117.1051

A2 0 0 0 127.7941 71.8631 0 152.0380 138.5101 105.0163

A3 216.1286 206.0584 167.6150 216.1286 216.1286 196.5068 88.4451 70.6855 54.1171

A4 101.0610 103.8380 89.0969 108.9810 138.5372 118.8616 126.0261 107.3537 86.8536

A5 59.5559 53.6408 45.5316 0 0 0 216.1286 210.3947 216.1286

A6 0 0 0 140.3939 78.4830 0 46.6174 49.1892 52.0334

A7 92.2709 90.6950 75.2890 183.8183 158.2582 101.4447 0 0 0

A8 171.9056 135.1967 96.7983 119.6030 117.4986 72.6833 200.0035 143.5753 97.7919

A9 100.8641 89.3689 82.1227 215.5695 216.1286 211.1505 1.2613 1.2371 1.5736

A10 0 0 0 72.0647 43.7972 0 216.1286 215.7627 157.2009

Y1 - - - 4.5720 4.5720 - 17.0100 15.7189 13.1602

Y3 6.8668 7.5424 8.5648 16.4487 15.6224 13.0746 19.5962 18.0858 17.2902

Y5 11.3710 11.6358 12.7233 24.2899 22.8190 20.5424 25.4000 25.4000 25.3802

Objective functions & constraints

Weight (kg) 2761 2488 2118 5520 4849 3377 5222 4513 3502

f1 (Hz) 27.64 27.55 27.89 24.68 25.66 26.61 17.18 17.30 17.62

f2 (Hz) 51.65 51.32 50.19 33.77 34.76 34.54 29.90 27.73 26.35

f3 (Hz) 70.73 68.19 64.59 35.70 39.88 43.03 34.59 32.33 30.62

λcr 393 390 375 794 633 308 3691 3232 2457

umax (cm) 5.04 5.07 5.08 1.24 1.37 1.87 5.05 4.91 4.89

σmax (MPa) 73.63 78.41 78.43 28.26 32.19 48.11 111.67 107.88 94.06
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Figure 9. Pareto fronts for the three cases analyzed in the 10-bar truss, at left sides, and at right sides,
their respective extracted solutions according to the preferences of the Decision Maker.
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6.2 The 52-bar truss dome

This next experiment corresponds to the multi-objective structural optimization of the 52-bar truss
dome depicted in Figures 10 and 11. The material has Young’s modulus E = 210 GPa and density ρ =
7800 kg/m3 and a nonstructural mass of 50 kg is attached at all free nodes. For sizing optimization, the
cross-sectional areas are linked in 8 groups: A1 − A4, A5 − A8, A9 − A16, A17 − A20, A21 − A28,
A29 − A36, A37 − A44 and A45 − A52 (according to the symmetry around the central node); for shape
optimization, nodal coordinates are free to move between ± 2.0 me :x2, x6, z2, z6 and z1 (also keeping
the symmetry for all nodes). Therefore, there is a total of 13 design variables (8 for sizing and 5 for
shape). The search space for sizing design variables is composed of the continuous space between 0 and
10.0 cm2.

Again, it is considered the same idea for the 3 cases introduced in the 10-bar truss:
• #1 - weight minimization along with maximization of the first natural frequency of vibration;
• #2 - weight minimization along with maximum nodal displacement minimization;
• #3 - weight minimization along with elastic critical load maximization;
When natural frequencies of vibrations are set as constraints, the limits are f1 ≤ 15.9155 Hz and

f2 ≥ 28.6479 Hz; for nodal displacements, the maximum allowable value is equal to 0.04 m (4 cm);
for stability analysis, the minimum elastic critical load factor must be greater than 1.0. Also, there are
constraints for axial stress in the bars: both tension or compression stresses of each bar are bounded by
172.37 MPa. The vertical downwards loads are 1000 kN at node 1, 2500 kN at nodes 2-5 and 1250 kN
at nodes 6-13.

The obtained Pareto curves are shown in Figures 12 to 14 and corresponding EAF’s and hypervol-
umes are shown in Figures 15 to 17. Figure 18 shows the Pareto fronts for the three cases analyzed in the
52-bar truss, at left sides, and right sides, their respective extracted solutions according to the preferences
of the Decision Maker. Table Table 2 shows the design variables and constraints of the solutions of the
52-bar truss dome extracted from Pareto fronts according to MTD Method.
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t52, HVbest = 1, HVmedian = 0.97859 and
HVworst = 0.92606.
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t52, HVbest = 1, HVmedian = 0.95082 and
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t52, HVbest = 1, HVmedian = 0.61377 and
HVworst = 0.54187.
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Figure 18. Pareto fronts for the three cases analyzed in the 52-bar truss dome, at left sides, and at right
sides, their respective extracted solutions according to the preferences of the Decision Maker
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Table 2. Design variables and constraints of the solutions of the 52-bar truss dome extracted from Pareto
fronts according to MTD Method. The cross-sectional areas Ai are given in cm2 and Xi and Zi coordi-
nates are given in meters.

Case

1 2 3

Scenario Scenario Scenario

dv 1 2 3 1 2 3 1 2 3

A1 4.0636 3.2232 2.2111 4.0706 2.5046 1.5534 2.6533 2.7549 2.3778

A2 4.3495 4.1591 2.4446 10.0000 8.0210 4.3892 4.5708 8.0463 6.2896

A3 4.2898 3.2238 2.4185 4.5321 2.8793 2.2170 3.1670 3.1961 2.9383

A4 4.3087 3.3474 2.3176 5.1453 4.0900 2.2679 9.5539 8.9232 8.0963

A5 5.1198 3.6578 2.6529 1.2648 1.0663 1.2349 3.5930 2.8938 3.3799

A6 1.8548 1.4153 1.1582 10.0000 6.8681 4.8151 1.1367 1.1595 1.1501

A7 6.2858 4.1652 2.7783 2.2919 2.3072 1.9288 6.6151 7.2411 5.4386

A8 6.8928 4.6207 3.3836 1.1964 1.1750 1.3936 4.9026 3.5020 3.2629

Z1 4.54 4.41 4.63 7.99 7.11 7.6840 4.0714 4.0174 4.0819

X2 2.25 2.20 2.18 2.08 2.01 2.4348 3.9346 3.9677 3.9348

Z2 3.86 3.80 3.97 5.09 4.68 4.8591 4.5161 4.4299 4.3794

X6 3.77 3.80 3.78 4.29 4.11 4.3881 3.9266 3.9530 3.9459

Z6 2.73 2.65 2.77 2.51 2.51 2.5234 4.5516 4.5196 4.4969

Objective functions & constraints

Weight (kg) 723.89 510.54 366.12 637.61 466.45 357.73 808.86 759.58 662.46

f1 (Hz) 47.14 41.64 36.61 15.39 15.49 15.70 15.61 14.42 10.03

f2 (Hz) 47.17 41.64 36.74 29.04 28.81 29.24 30.75 29.28 29.37

λcr 1524 1124 880 445 323 348 13739 12667 10322

umax (cm) 0.04 0.04 0.06 0.01 0.02 0.02 0.19 0.22 0.44

σmax (MPa) 6.94 10.34 13.06 2.96 4.30 6.07 8.39 8.78 13.94
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7 CONCLUSIONS AND FUTURE WORK

One can observe that some of the Pareto curves were not ’ “unique"; the consideration design vari-
ables concerning topology optimization in these problems leads in a highly complex non-linear problem
to be solved, having a significant effect on solutions found by the algorithm: there are bifurcations on
Pareto fronts representing these different topologies found by different independent runs, indicating a
local minimum found in these runs. In a general conclusion, the obtained Pareto front for the both exper-
iments were intuitive and coherent when compared to the same problems under mono-objective analysis
performed in (Carvalho et al. [40], Souze et al. [41], Rahami et al. [42]), Vu [43].

Extracted solutions from MTD method showed a few different topologies. Again the results ob-
tained were graphically intuitive when the preferred weights wi for the objective functions are modified.

The experiments analyzed in this paper are considered small -scale, and the purpose is to offer a
methodology that provides a range for the mono-objective problems found in the literature

For future works, it is intended to discuss large-scale multi-objective structural optimization prob-
lems (including ground-structures) to investigate more effectively the effects of the topology optimiza-
tion, also considering new objective functions. It is expected to analyze the same experiments modeling
the structures as 3D frames to investigate the different behavior.
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