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Abstract. Structural damage is a key concern for several areas in civil engineering sector (buildings,
bridges), mechanical engineering, aerospace sector (aircrafts, rockets, satellites), automotive sector, and
many other Therefore, the structure health monitoring is an important topic research and operation. The
structural damage identification can be addressed as an inverse vibration problem. This inverse problem
can be formulated as a generalized least square problem, where the stiffness matrix must be identified in
order to have a best matching between measurements and the mathematical model added to a regulariza-
tion operator. We solve the forward problem using finite element method, and an entropic regularization
is also applied to the cost function. The optimization problem is solved by using a hybrid method, com-
bining a stochastic metaheuristic with a local searching method. The Multi-Particle Collision Algorithm
(MPCA) is the metaheuristic technique and the Hooke-Jeeves (HJ) direct search method complete the
hybrid optimizer. The proposed methodology is applied to different study cases showing good results. A
cantilever beam is the testing structure for the developed approach.

Keywords: Damage identification, regularized inverse solution, hybrid optimization approach, Multi-
Particle Collision Algorithm (MPCA), Hooke-Jeeves (HJ) method.
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REGULARIZED SOLUTION FOR STRUCTURE HEALTH MONITORING

1 Introduction

The health monitoring for structure is a critical issue for many activities, such as aerospace engineer-
ing. Indeed, if a damage is not detected and not repaired, the structure could collapse, implying serious
consequences, with severe human and material losses. Structural damage identification is an important
branch of the vibration inverse problem. Inverse problems belong to a class of ill-posed problems.

The Russian mathematician Andrei Nikolaevich Tikhonov is cited as the first scientist to formulate
a general technique to compute an inverse solution with his regularization theory [1]. The regularization
technique is based on minimization of a functional. We follow similar scheme, and the damage identi-
fication is formulated as an optimization problem, where the objective function has two parts. One part
evaluates the agreement between the mathematical model and the measurements, and another term of the
objective function is the regularization operator.

The forward problem is a matrix differential equation of second order evoluting with time from
the second law of the Newtonian mechanics. The structure is discretized using finite elements, where
mass, damping, and stiffness matrices are structure characteristics. The response to an external forcing is
associated with structure elements, where the stiffness deviation of one or more elements is interpreted
as a structural damage. Therefore, damage identification problem is linked to find the system stiffness
matrix. So, this inverse solution is obtained by solving the optimization model containing two parts, as
mentioned in the last paragraph.

The structural health monitoring, by damage detection, is recognized as a hard problem, in particular
dealing with a system with high degrees-of-freedom (DOF). One difficulty is because the objective func-
tion can have many local minima. Another mathematical difficulty happens when the search space drops
on a hyperplane, where gradient-based methods fail. One approach for calculating an inverse solution is
applying metaheuristics without use of gradient information. A hybrid optimization method is employed
here, for avoiding be trapped into local minimum, and a local searching method for speeding-up the con-
vergence. The hybrid approach combines the Multi-Particle Collision Algorithm (MPCA) metaheuristic
[2], with the Hooke-Jeeves (HJ) direct search method [3] as a second stage to identify the stiffness matrix.
This hybrid optimization was already used for mass-spring problem stiffness identification problem [4].
An entropic regularization is also applied, and the regularization parameter is determine by numerical
experimentation.

The Cantilever beam structure will be analized here, where the initial conditions for the strucutre
are assumed to be at rest. Synthetic observations are considered for testing the inverse methodology.

2 Determining Structural Damage by an Inverse Solution

The direct problem is expressed in a matrix form, describing a system with many degrees-of-
freedom (DOF). The second order and non-homogeneous system of ordinary differential equation repre-
sents the vibration problem:

M
d2u(t)

dt2
+ C

du(t)

dt
+ Ku(t) = F (1)

where M, C, K are matrices of mass, damping, and stiffness, respectively; F is the forcing term; and
u(t), du(t)/dt, d2u(t)/dt2 represents the displacements, velocity, and acceleration, respectively. The
initial conditions are given by:  u(0) = u0

du(0) = du0/dt

It is hard to calculate an analytical solution for arbitrary values of K, C, M, and F. Therefore, a
numerical solution for this forward problem is obtained using the Newmark method [5].

The inverse problem for damage determination is expressed as an optimization problem. The opti-
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mal inverse solution is found by minimizing the functional below:

J(K) =

Np∑
i=1

[
uExp(ti)− uMod(ti,K)

]2
+ αΩ[K] (2)

where uExp and uMod are the experimental and computed displacements at time t, respectively, with Np

meaning the number of measuring points, α is the regularization parameter, and Ω[.] is the regulariza-
tion operator. The parameter α is determined by numerical experimentation following the Morozov’s
discrepancy principle [6].

The regularization process is based on the maximum principle of entropy, proposed as an inference
criterion by Jaynes [7] on basis on the Shannon’s theory of information [8]. The entropy regulariza-
tion will be looking for the smoothest candidate solution. This regularization has been used in many
application such as astronomy [9], tomography [10], geophysics [11], and heat transfer [12].

The discrete entropy of vector r is given by

S =
Q∑
q=1

sq log(sq) (3)

where sq = rq/(
∑Q
q=1 rq). The maximum of entropy S is reached when sq belongs to an uniform

distribution, implying Smax = logQ, and the minimum value for the entropy is verified when sq is
associated to the Dirac delta distribution.

2.1 Solving the Optimization Problem

The solution of the optimization problem, i.e. the inverse problem, the global optimization algorithm
(MPCA) looks for good candidate solutions in the search space. If the stopping criteria is reached, the
algorithm is interrupted. In the sequence, the local optimization algorithm (HJ) is activated, intensifying
the searching process. The best solution found by HJ will be the solution for the inverse problem.

Multi-Particle Collision Algorithm

The Multi-Particle Collision Algorithm (MPCA) is a method based on the traveling of particles
(neutrons) inside of the nuclear reactor [2]. Two main phenomena are identified during the neutron trav-
eling: absorption and scattering. A set of particles (candidate solutions) are randomly generated. Three
principal functions in the algorithm control all the process: perturbation, exploration, and scattering.
Particles are perturbed, and depending on their fitness, they are absorbed or scattered to other region of
the space search.

Particles in the whole population behave cooperatively, i.e., the best particle overall is over-copied
for all other particles in the set, through a blackboard strategy. The UpdateBlackboard procedure is ap-
plied each a number of function evaluations NFEblackboard. As stopping criterion, a maximum number of
function evaluations NFEMPCA is defined. Here, we are going to employ a recent version of the MPCA,
where a new strategy to select new candidate solutions is adopted. The new strategy is called Rotation-
Based Sampling (RBS) [4]. The new mechanism is based on Opposition-Based Learning (OBL), where
a candidate solution is proposed and an opposite candidate (considering the distance of the candidate so-
lution up to the center of the search space) is also evaluated. A generalization of the opposite procedure
is considered taking into account the circle with radius being the distance between the candidate solution
and the center of the search space, and a new candidate solution can be evaluate selecting a point on the
circle.

Hooke-Jeeves Method

The direct search method of Hooke-Jeeves (HJ) [3] consists of the repeatedly application of ex-
ploratory movements about a base point which, if successful, is followed by pattern moves. In a D-

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019



REGULARIZED SOLUTION FOR STRUCTURE HEALTH MONITORING

dimensional problem, a candidate solution is denoted as a vector s of length D. The exploratory move-
ment consists adding one column of the search directions matrix V, scaled by a step size h, to the
solution s. This process is made over all the dimensions of the problem. A new solution is accepted if
it is better than the previous s. If the exploratory movement was successful, it will return an improved
solution sm.

The pattern move sm∗ is computed adding a search direction sm − sc to sm − sn∗. If sn∗ is better
than sm then it will replace the latter, else sm will become the new sc. If no improvement is found for sc,
the step size h is reduced in ν times. As stopping criteria, a minimum step size (hmin) and a maximum
number of function evaluations (NFEHJ) are defined.

3 Damage Identification in a Cantilever Beam

The cantilevered beam shown in Figure 1a is modeled with ten beam finite elements – see Figure 1b.
It is clamped at the left end, and each aluminum beam element, with ρ = 2700 kg/m3 andE = 70GPa,
has a constant rectangular cross section area with b = 15× 10−3 m and h = 6× 10−3 m, a total length
l = 0.43m, and a inertial moment I = 3.375× 10−11 m4. The damping matrix is assumed proportional
to the undamaged stiffness matrix C = 10−3K. An external varying force F(t) = 5.0 × 2.0 sin(πt) N
is applied to the tenth element – see Figure 1b, in the free extreme of the beam, as shown in Figure 2.
Initial conditions for displacement and velocity are assumed equal to zero: u(0) = 0, u̇(0) = 0.

b

h

l

(a)

1 2 3 4 5 6 7 8 9 10

b

h

1 2 3 4 5 6 7 8 9 10

F

l

(b)

Figure 1. Cantilever Beam structure (a), and beam model with 20-DOF (b).

Strain-gages are sensors for measuring structural displacements, while rotations could be measured
by rotation rate sensors or gyroscopes [13]. Here, synthetic observations were taken from the nodes
of the structure, by executing the forward model. For the experiments, the numerical simulation was
performed assuming tf = 2s, with a time step ∆t = 4× 10−3s.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−5

5
·10−2

t(s)

F (N)

Figure 2. Load F (t) applied on the cantilever beam.

Four numerical experiments are performed: noiseless data, white Gaussian noise data with zero
mean, and three levels of noise: σ2 = 0.02, σ2 = 0.05, and σ2 = 0.10 – only the last two cases are
shown in this paper. The synthetic measurements are computed from additive noise:

uδ(t) = u(t)
[
1 + δ(t)σ2

]
(4)

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 11-14, 2019



Reynier Hernández Torres, Haroldo Fraga de Campos Velho, Leonardo Dagnino Chiwiacowsky

where u(t) is the displacement calculated by the forward model, and δ(t) is a random number with
Gaussian distribution N (′, σ∈). Figure 3 shows the dynamic response for the displacement in the nodes
1, 5, and 10 of the system with (red color) and without (blue color) damages.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.05

0

0.05

t(s)

u(m)

Figure 3. Dynamic responses for node 1 (solid line), node 5 (dashed line), and node 10 (dot-dashed line)
of the structure with damages (red), and without damages (blue).

Different scenarios for the damage configuration were considered:
1. Measurement points on all discrete elements, with only one damaged element (node-1).
2. Measurement points on two elements for displacement (nodes 2 and 10) and on two elements for

rotation (nodes 5 and 10), with only one damaged element (node-1).
3. Measurement points on all discrete elements, with several damaged elements (nodes 2, 4, 6, 9, 10).
4. Measurement points on two elements for displacement (nodes 2 and 10) and on two elements for

rotation (nodes 5 and 10), with several damaged elements (nodes 2, 4, 6, 9, 10).
For noiseless observation data, the regularization is not necessary. The reconstructions for the sce-

narios 1, 2, 3 were perfect. For the scenario 4, the methodology identify the damages, but indicates false
damages on the 9-th and 10-th elements.

The stiffness reconstruction for scenario-1 with noisy data can be visualized in Figure 4. The method
can identify the location and the intensity of damage. The effect of regularization is clear: reconstruction
without regularization is marked with blue color, while the regularized solution is shown on red
color – see Figure 4. There are false damages from the inversion without regularization. The regularized
reconstruction is almost perfect – only on 2-th element is indicate a smaller intensity damage.
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Figure 4. Results for the MPCA-HJ using entropy regularization with measurements on all discrete
points, with only one damaged element.

For scenario-4, the damage configuration was assumed with 10% stiffness reduction on the 2nd
element, 20% on the 4th, 30% on the 6th, 5% on the 9th element, and 10% on the 10th element. The
remaining elements are assumed as undamaged. Measurements were taken from some degrees of free-
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dom: displacements from node 2 and node 10, and rotation from node 5 and node 10. Therefore, four
time-series with 500 points are stored. For the analysis for each time-series, an average of 50 executions
of the inverse solution was calculated.

All damaged elements for the scenario 4 were identified – see Figure 5 – on nodes 2, 4, 6, 9, and
10. Hybrid optimizers with MPCA and other two different versions of MPCA (CBMPCA – Center-
based Sampling – and RBMPCA – Rotation-based Learning) were effective, with no significant different
performance among them. However, the MPCA obtained best answer to recover the stiffness for no
damaged elements.
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Figure 5. Results for the MPCA-HJ, CBMPCA-HJ, and RBMPCA-HJ using four measurement points,
with damaged elements on nodes 2, 4, 6, 9, 10.

4 Final Remarks

The structural damage identification was formulated as an optimization problem, with the cost func-
tion described by the best agreement between the measurements and the mathematical searching for a
smooth solution. The forward model was solved by using the finite element method and the Newmark
method employed for time integration. The hybrid methodology, combining a metaheuristic – MPCA
and two version of it – and the local searching method – the Hooke-Jeeves approach –, was an effective
strategy to compute the optimal solution.

Four scenarios with different levels of noise were designed for testing the inversion methodology.
The experiments showed the relevance to apply the regularization to achieve a more precise damage
identification – see Figure 4. Scenario-4 presented a harder challenge, and good inverse results were also
obtained for this scenario.

Finally, it is important to mention that true positions of damages were identified, considering all
tested scenarios with different levels of noise, including noisy data with σ2 = 0.10 – the highest noise
level considered in our numerical experiments.
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