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Abstract. In this work, parameter estimates of a magnetohydrodynamic model (MDH) representing the 

transient pulsatile blood flow were performed, considering blood rheology as a third-degree non-

Newtonian fluid, through a porous blood vessel, under the action of a magnetic field, pressure gradient 

and subjected to an externally imposed periodic acceleration field. The direct model (MHD) is solved 

by applying the Method of Lines (MOL). For the application of the inverse problem via Approximate 

Bayesian Computation (ABC), the sensitivity coefficient was first analyzed to define which parameters 

should be estimated simultaneously. The algorithm used was an adaptation of ABC SMC proposed by 

Toni et. al., (2009), where verification was performed by simulated measurement generation at different 

levels of uncertainty (1%, 5%, and 10%) and considering different particle quantities (200 and 500). 

The results show the efficiency of this algorithm to estimate the parameters of mathematical models of 

this nature. 

Keywords: Parameter Estimation, Approximate Bayesian Computation (ABC), Blood Flow, Non-

Newtonian Fluid, Magnetohydrodynamics (MHD). 
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1  Introduction 

Magnetohydrodynamics (MHD) is the science that studies the flow of fluids subjected to magnetic 

fields and evaluates the mutual interaction between the magnetic and velocity fields of electrically 

conductive fluids and non-magnetic, for example, ionized hot gases (plasmas) and strong electrolytes 

(blood) (Hide e Roberts, 1962 [1]). 

Blood flow studies under the influence of an external magnetic field (commonly generated by the 

application of magnetic dipoles) are known as BFD (Biomagnetic Fluid Dynamics) (Higashi et al., 1993 

[2]). Great effort has recently been put into this area, which has important potential applications in 

biomedical sciences, citing drug transport using magnetic particles as transport agents, reducing 

bleeding during surgeries, and developing magnetic cell separation devices (Andra e Nowak, 1998 [3]). 

The composition of blood includes plasma (water, glucose, etc.), blood cells (red blood cells, 

leukocytes), platelets, among others and, although the plasma has Newtonian fluid rheology, in 

hematocrit (percentage of volume occupied by red blood cells in total blood volume) viscosity decreases 

under shear stress and therefore in relation to viscosity the blood has to be considered as a non-

Newtonian fluid (Hron et al., 2000 [4]). In addition, interactions of hemoglobin, cell membrane, and 

intercellular protein give rise to the magnetic properties of blood (Higashi et al., 1993) [2]. Given this, 

Ellahi et al., (2004) [5] stated that the hypothesis of blood as a Newtonian fluid may be valid when the 

blood vessels are large (arteries and veins). However, when the diameter of the blood vessel is of the 

same order as the red blood cells and corpuscles (arteries and capillaries), it is understood that the nature 

of the blood should be treated as non-Newtonian. 

The human cardiovascular system causes blood to flow through the pumping action of the heart, 

muscle organ, which in humans and other animals produces a pulsatile pressure gradient throughout the 

system, so that, pressure and flow are characteristics in pulsatile profiles that vary in different parts of 

the arterial system (Misra et al., 2008) [6]. However, some diseases are caused by excessive formation 

of fatty substances (cholesterol and blood clots) interfere with the way blood flows through the body, 

because they form a porous structure that by restricting it, can lead to more and more health problems, 

such as myocardial infarction (MI). Thus, there is a growing interest in the development of strategies to 

improve understanding of this process and, consequently, to develop ways to remediate such diseases 

(Ritman and Lerman, 2007) [7]. 

Simulation of biological systems requires knowledge of the parameters that govern these processes. 

However, most of these parameters have unknown values and are often impossible to measure directly, 

so it is necessary to estimate or infer these parameters from observed data. Given this, the inverse 

problem techniques based on Bayesian inference become very attractive, especially the Approximate 

Bayesian Computation (ABC), because they do not need to calculate the likelihood function. For 

example, the application of this technique to models of neurological systems (Estumano, 2016) [8], 

tumor growth models (Costa et al., 2018) [9] and biological systems (Stumpf et al., 2000) [10] can be 

cited, in which it was clear that the application of this Bayesian technique allowed, within a certain 

uncertainty, the quantification of parameters that were essential for the understanding of the studied 

systems. 

In this context, the present work intends to use the Approximate Bayesian Computation to estimate 

the parameters of a pulsatile MHD transient model flow model as an incompressible fluid, third-degree 

non-Newtonian, through porous arteries under the action of a magnetic field and a pressure gradient. 

For this, simulated measurements were generated considering different levels of uncertainty and a pre-

estimation analysis of the sensitivity coefficient was made to choose which parameters can be safely 

estimated. 

2  Direct Model - MHD 

The transient pulsatile laminar flow of an incompressible, non-Newtonian blood fluid through a 

porous blood vessel in the presence of a magnetic field and a pressure gradient is shown in Fig. 1. In 

this problem, blood flows in the x direction through a fully porous blood vessel with radius R and an 
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axial velocity u (r, t), that is, the flow is considered stable and axisymmetric, without radial and angular 

velocity components. It is assumed that there is no slip condition (u = 0) on the outer wall (r = R) and 

symmetry condition in the center of the vessel (r = 0). Blood flow is caused by the pressure gradient 

produced by the pumping action of the heart and affected by the body acceleration (g). It is emphasized 

that the effect of gravity in the radial direction is neglected. 

 

 

 
Figure 1. Conceptual physical model of MHD blood flow through a porous blood vessel (adapted from 

Akbarzadeh, 2016 [11]). 

 

The dimensionless model in the domain 0 ≤ r ≤ 1, t ≥ 0 with the respective initial and boundary 

conditions for the velocity field was obtained by Akbarzadeh (2016) [11], as shown below: 

Incorporating all simplifying assumptions into the momentum conservation equation, the governing 

equation direction x is expressed as Eq. (1.a): 
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the force of the magnetic field, Ao is the pressure gradient constant, A1 is the amplitude of the pressure 

fluctuation that gives rise to at systolic and diastolic pressures, ωp is the heart rate frequency (ωp = 2πfp), 

fp is the pulse rate, Ag is the acceleration amplitude, ωg is the frequency (ωg = 2πfg), φ is the conduction 

angle (or phase) and t is the time. 

The dimensionless groups used in the present formulation are as follows: 
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Thus, the mathematical model of the problem in its dimensionless form accompanied by its initial 

and boundary conditions is written as follows: 
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Where α2 is the Womersley number, B1 is the pressure gradient parameter, γ and Λ are the parameters 

of a third degree non-Newtonian fluid, M 2is the magnetic parameter, B2 is the acceleration parameter, 

ω is the frequency ratio and P is the porosity parameter. 

The method of lines was used for direct model resolution, this method replaces the spatial derivatives 

(boundary value problem) in the partial differential equation (EDP) by algebraic approximations. Once 

this is done, spatial derivatives are no longer explicitly represented in terms of independent spatial 

variables, remaining only an initial value problem (in time). Thus, with only one independent variable 

remaining, a system of partial differential equations (ODEs) approximating the original EDP is obtained. 

Therefore, one of the main features of MOL is the use of existing and generally well-established 

numerical methods for ODEs (Schiesser and Griffiths, 2009) [12]. 

Using a regressive approximation to the derivative, the following system of ODEs is generated: 
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With the following initial and boundary conditions as follows: 

 

IC: t = 0,  0 ≤ r ≤ 1, 0iu =     1 < i < N (4.c) 

BC: t > 0,  r = 0, 
1 2u u=    i = 1  (4.d) 

 t > 0,  r = 1, 0Nu =     i = N  (4.e) 

3  Inverse Problem 

3.1 Reduced sensitivity coefficient 

The reduced sensitivity coefficient, which represents a measure of the sensitivity of the state variable 

Yi in relation to the variations of the parameter Pj, was calculated by finite differences using Eq. (5). 

Small magnitude values of Xij indicate that large variations in Pj cause small changes in ui. In these 

cases, estimates of Pj parameters can be difficult since the same value of u can be obtained for a large 

range of Pj values. Besides the large magnitude for the sensitivity coefficient, another aspect that should 

be noted is linear dependence between the parameters, since it is not possible to simultaneously estimate 

parameters that have linearly dependent sensitivity coefficients (Beck et al., 1985) [13]. 
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3.2 Simulated Measurement Generation 

Due to the difficulty in obtaining experimental data on pulsed magnetohydrodynamic flow of 

biofluids, as well as to evaluate the accuracy and robustness of the proposed inverse problem solution 

to be developed later, simulated velocity data along the length of the bed in the transient regime are 

used, which were obtained by solving the direct problem through specifying the parameters and 

imposing a disturbance with additive errors, uncorrelated Gaussians of known mean and standard 

deviation, as shown in Eq. (6). 

measure exact measureu u  = +  (6)

 
In this context, it is possible to analyze three levels of uncertainty, σmeasure (measure deviation): 1%, 

5% and 10%, Eq. (7a-c), which represent scenarios of very well calibrated sensors or equipment (1%) 

even a situation where the measures have a high level of uncertainty as a function of their related errors 

(10%). 

measure exact0,01maxu = ; measure exact0,05maxu = ; measure exact0,1maxu =  (7a-c) 

3.3 Approximate Bayesian Computation (ABC) 

The Approximate Bayesian Computing (ABC) technique was initially developed by Rubin (1984) 

[14] and Diggle and Gratton (1984) [15]. ABC is advantageous over other Bayesian techniques because 

it does not require the exact calculation of the likelihood function, since many problems have a 

mathematically and computationally intractable likelihood function (Taylor, 1954 [16]; Beaumont et al., 

2009 [17]; Pritchard et al., 2009 [18]; Chiachio et al., 2014 [19]). These ABC techniques basically 

follow the following algorithm: 

(i) Sample a candidate parameter vector P* from some proposed a priori distribution π(P); 

(ii) Simulate a model data set u* by solving the direct model u* ≡ f (P*); 
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(iii) Compare the dataset, u*, with the experimental / simulated data, u, using a distance function d 

and a tolerance ε, if d (u, u*) ≤ 𝜀, P * is accepted. The tolerance ε ≥ 0 is the desired level of 

agreement between u and u*. 

 

Toni et al., [20] presented an Approximate Bayesian Calculation algorithm based on sequential 

Monte Carlo (ABC-SMC) to select models and estimate parameters simultaneously, based on the 

acceptance-rejection test and the Euclidean distance between the prediction made by the model and the 

experimental measurements. In this ABC SMC algorithm, it seeks a sequential approximation of a 

posterior probability distribution. For this, a set of intermediate distributions are obtained, which are 

called populations. Each population is composed of a set of accepted particles that carry with them 

information of the P parameters to be estimated and thus give rise to a simulated dataset u*. In this work 

an adaptation of the referred algorithm proposed by Toni et al., (2009) [20], which will be presented 

below, however, only the parameter estimation will be made because there is only one mathematical 

model, there is no need to select models. 

 

1. Set the indicator population 𝑝𝑜𝑝 = 0; 

2. Define the indicator particle 𝑖 = 1; 

3. Draw a parameter 𝑷∗ from 𝜋(𝑷) 
    If 𝑝𝑜𝑝 = 0, draw 𝑷∗∗ regardless of (𝑷). 

    If 𝑝𝑜𝑝 > 0, draw 𝑷∗ from the previous population {𝑷𝑝𝑜𝑝−1
(𝑖)

} with weight 𝑤𝑝𝑜𝑝−1 and disturb the 

particle to get 𝑷∗∗~𝐾𝑃(𝑷|𝑷
∗), where 𝐾𝑃 is the disturbing kernel. 

    If 𝜋(𝑷∗∗) = 0, returns to 3.  

    Simulate a candidate data set 𝑢∗~𝑓(𝑢|𝑷∗∗); 

4. Set 𝑷𝑝𝑜𝑝
(𝑖)

= 𝑷∗∗ and calculate the particle weight 𝑷𝑝𝑜𝑝
(𝑖)

, 

𝑤𝑝𝑜𝑝
(𝑖)

=

{
 

 
1,                                                                    𝑖𝑓 𝑝𝑜𝑝 = 0,

𝜋 (𝑷𝑝𝑜𝑝
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)
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5. If 𝑖 < 𝑁, set 𝑖 = 𝑖 + 1, and go back to 3; 

6. Normalize the accepted particle weights; 

7. Set pop = pop + 1 and go back 2; 

8. 
( )

( )
i

pop

i

d
CV

d




= , CV is the coefficient of variation;  

9.  𝜀 = �̅�𝑝𝑜𝑝−1, ε is the tolerance; 

10. If 𝑑 (𝑢0, 𝑢 ∗) ≥ ε, and go back 3; 

11. If 𝐶𝑉𝑝𝑜𝑝 > 𝐶𝑉𝑙𝑖𝑚𝑖𝑡, and go back 2. Otherwise, stop. 

4  Results and discussion 

The Womersley number (α2) is a dimensionless parameter in BFD that relates the pulsatile flow 

frequency (transient inertial forces) and the viscous forces and, since blood vessel diameters in the 

human body may differ by up to three orders of magnitude (Fung, 1997 [21 ]), α2 will depend 

predominantly on diameter. Thus, the distinction of blood vessel type here is made in terms of the 

Womersley number. The parameters chosen in the present work are intended to represent a capillary 

vessel, which allows simulations of flow in arteries, for example. Table 1 presents the value of the 

reference parameters (Pref) used in the simulation. 
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Table 1. Problem reference parameters (Pref) (Akbarzadeh, 2016 [11]). 

Λ 0,100 

γ 0,200 

ω 1,00 

φ 3,100 

B1 1,440 

B2 1,400 

α2 0,005 

M 2+P 0,100 

 

4.1 Generation of simulated measures  

 

The generation of simulated measures considering the three levels and uncertainty are presented in 

Fig. 2.  

 
Figure 2. Velocity profile with simulated measures for MHD flow in porous capillaries for the three 

standard deviation values: (a) 1%, (b) 5% and (c) 10% in the central position (r = 0). 

 

It can be observed in Fig. 2 that, for the smallest standard deviation value (1%), the simulated 

measure values almost coincide with the exact value obtained from the solution of the direct model, 

while for the other values (5% and 10%) it is already possible to notice a larger dispersion of the 

simulated measures in relation to the exact value, which was expected due to the nature of the normal 

distribution that incorporates the average in the exact value of the direct model and the value of the 

variance initially chosen. 

 

4.2 Sensitivity coefficient analysis 
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For the sensitivity coefficient analysis, the value of the perturbation ε to be used should be evaluated, 

because when choosing a value too small for ε, the numerator and denominator values of Eq. (5) become 

very small, resulting in appearance of numerical errors. On the other hand, the use of large values ε 

results in approximation errors of the finite difference formula for continuous derivatives of reduced 

sensitivity coefficients. After evaluating the value of the perturbation, it is clear that a reasonable value 

that does not incorporate numerical errors or approximation errors in the results of the mathematical 

model analyzed here is
2

 10 .
−

=  

  
Figure 3. Analysis of reduced sensitivity coefficients of parameters Λ, γ, ω, φ, B1, B2, α2 and M 2P  (XΛ, 

Xγ, Xω, Xφ, XB1, XB2, Xα2 e XM2P) with the state variable, u (r = 0). 

 

In Fig. 3 it is possible to evaluate that the magnitude of XΛ, Xγ, Xφ, Xα2 and XM2P are very low 

(approximately equal to 0), so that these parameters do not have significant influence on the state 

variable, resulting that Λ, γ, φ, α2 and M 2P does not need to be estimated. 

 
Figure 4. Ratio XB1/XB2 plot of parameters B1 and B2 with state variable, u (r = 0). 

 

In Fig. 4 it is observed that the value of the ratio XB1/XB2 (reduced sensitivity coefficients ratio of 

parameters B1 and B2) can be considered a constant value throughout the evaluated time, since there are 

small intervals that present peaks down or up, indicating that both are linearly dependent. Therefore, it 

can be concluded that only one of the parameters, B1 or B2, must be estimated. Among the two, the 

pressure gradient parameter (B1) is chosen to be estimated. Thus, the parameters that have the greatest 
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influence on the studied potential (u) and consequently the parameters to be estimated next are ω and 

B1. 

 

4.3 Parameter Estimation by ABC 

 

Here, we analyze the variation of the measure deviation (σm) and the number of particles (nparticles), 

as shown in Table 2, so that it is possible to verify the influence of each of these on the parameter 

estimates. Linf and Lsup are the limits on the uniform probability distribution: Linf = 0,5*Pref e Lsup = 

1,5*Pref, representing a priori probability distribution, where Pref is each one of the reference parameters 

from Table 1. It was decided to make the parameter estimates for a period of the velocity profile (up to 

t = 1).  

  

Table 2. Cases used to evaluate the influence of σm and nparticles on estimates. 

CASE Linf and Lsup σm nparticles CVlimit 

1 0,5 and 1,5 0,00 200 2,5.10-1 

2 0,5 and 1,5 0,00 500 2,8.10-1 

3 0,5 and 1,5 0,01 200 3.10-2 

4 0,5 and 1,5 0,01 500 3.10-2 

5 0,5 and 1,5 0,05 200 3.10-2 

6 0,5 and 1,5 0,05 500 3.10-2 

7 0,5 and 1,5 0,10 200 2,5.10-2 

8 0,5 and 1,5 0,10 500 3.10-2 

9 0,5 and 1,5 0,20 200 2,5.10-2 

10 0,5 and 1,5 0,20 500 3.10-2 

 

Fig. 5 presents the reduction of the parameter uncertainty with the advancement of the populations 

to Case 5. As all cases presented the same tendency, we chose to present only this one. Sequentially, the 

evolution of the state variable uncertainty is presented in Fig. 6. 
 

 
Figure 5. Population histogram evolution of the parameters (a) ω and (b) B1 obtained from ABC 

estimates with nparticles = 200 and σm = 5% (Case 5). 

 

In Fig. 5, it is observed that 9 populations were necessary for the algorithm to reach the stopping 

criterion and that with the advancement of populations, there is a reduction in the range of the estimated 

parameters, which is probably a reflection of the decrease in the value of the algorithm coefficient of 

variation, CV, as a result of the reduction of the uncertainties associated with the parameters. The 

posteriori probability distribution of the parameters were, respectively, 0,95-1,05 and 1,3-1,5, 

considering that the exact value of the parameters, according to Table 2, were ω = 1 and B1 = 1, 44, it 

can be said that the parameter estimation performed was satisfactory, since it was capable to recover the 
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reference parameters within a small posteriori range, from 50% to approximately ±5%, thus 

corroborating the assumptions of an algorithm verification.  

 

 
Figure 6. Evolution of velocity profiles (u) with populations to nparticles = 200 and σm = 5% in the 

central position (r = 0) with 95% credibility range (Case 5). 

 

Analyzing Fig. 6, we first observe the reduction of the credibility range with the advancement of 

populations. This occurs as a consequence of the reduction of the parameter uncertainties presented in 

Fig. 5, because the larger this interval is, the greater the average uncertainty of the state variable. 

Moreover, it can be observed that from the sixth population, the estimated state variable already 

presented excellent approximation compared to the simulated state variable, however, the algorithm did 

not stop. This was due to the requirement of the stopping criterion, the CVlimit, has not yet been reached. 

Table 3 presents the estimated parameters obtained for all cases analyzed. 

 

Table 3. Influence of measure deviation (σm) and number of particles (nparticles) on estimates of ω and 

B1. 

CASE σm nparticles 
Number of 

Populations 

Posteriori parameters interval 

ω = 1 B1 = 1,44 

1 0,00 200 19 0,99-1,0002 1,4395-1,4405 

3 0,01 200 13 0,995-1,005 1,43-1,45 

5 0,05 200 9 0,95-1,050 1,3-1,5 

7 0,10 200 8 0,95-1,050 1,4-1,5 

9 0,20 200 7 0,95-1,050 1-2 

2 0,00 500 22 0,99-1,0000 1,4398-1,4402 

4 0,01 500 13 0,995-1,005 1,43-1,45 

6 0,05 500 11 0,98-1,020 1,4-1,5 

8 0,10 500 7 0,95-1,050 1,2-1,6 

10 0,20 500 6 0,9-1,100 1-2 

 

Table 3 shows the influence of variation in measurement deviation (σm) and number of particles 

(nparticles) on the estimates of ω and B1. It can be observed that, by keeping the particle number constant, 

increasing the measure deviation from 0 to 0,2 causes the increased uncertainty observed by the 

significant increase in the uncertainties of a posteriori probability distributions in the parameter 

histograms (last population of Fig. 5). As the measure deviation increases, there is a significant reduction 

in the number of populations needed to estimate both parameters (from 22 to 6 with 500 particles). This 

can be explained because, with greater uncertainty, the measurements become more dispersed, giving a 

little more freedom in comparing the calculated state variable and the measurement, so that the algorithm 
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needs fewer populations to meet the stopping criterion. Increasing the number of particles from 200 to 

500 does not significantly change the number of populations, and the uncertainty (here measured by the 

posteriori interval) does not change significantly with nparticles, for the same measurement deviation in 

both parameters. 

5  Conclusion 

The algorithm used in this work was the ABC-SMC adapted from Toni et al. (2009) [20] to represent 

the flow behavior of a non-Newtonian biofluid in porous blood vessels under the action of a magnetic 

field, so that it can be used to simulate other cases, as well as to obtain simulated measurements. 

After analyzing the reduced sensitivity coefficient, it is concluded that the frequency ratio and the 

pressure gradient parameter were the parameters chosen to be estimated. From the generation of 

simulated measures, several uncertainty scenarios were obtained and their influence on the parameters 

recovery was evaluated, obtaining satisfactory results for all the uncertainty levels analyzed. 

The estimation of such parameters by the ABC technique demonstrates that the evaluated uncertainty 

scenarios produced satisfactory results, taking into account the priori probability distribution and the 

imposed measurement deviations. Thus, it can be concluded that this inverse problem technique was 

once again satisfactory for the estimation of biological parameters, a fact that is quite relevant, 

considering the difficulty in obtaining experimental information on these parameters. In addition, it is 

important to note that although this study is initial, the mathematical model used incorporated a series 

of hypotheses that really bring it closer to the MHD flow than the real, which compared to the vast 

majority available in the literature, is a differential. Thus, an important initial step for modeling and 

simulation of biological systems. 
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