# EXPERIMENTAL AND NUMERICAL ANALYSIS OF WING PLATE MODEL.

## Palavras-chave:

Kirchhoff-Love, Linear Elasticity Theory, Flat Plate## Resumo

The development of thin plate theory was due to the evolution of engineering that

continually needed to improve the mode of analysis of elements in a plate. In 1888 Augustus Edward

Hough Love (Weston-Super-Mare, 1863 - 1940) used Kirchhoff's hypothesis to determine a two-

dimensional mathematical model for the determination of stresses and deformations in thin plates

subjected to forces and moments, assuming a surface plane. Average can be used to represent a three-

dimensional plate in two-dimensional form (LOVE, 1897). As the flat plate theory has been refined by

adding new methods of analysis and theories, the approximation of equations by a discrete point

system in spacetime has become a fundamental necessity, the most common methods being: 1.

Volume Method Finite; 2. Finite Element Method and 3. Finite Difference Method. Equations can be

written in different forms depending on the coordinate system, such as Cartesian, cylindrical,

spherical, curvilinear, orthogonal, and non-orthogonal curvilinear. The present work had as main

motivation the comparison between two (2) different methods of analysis of flat plates of thickness t /

a << 1, where “t” is the thickness and “a” the largest dimension of the plate, with the configuration

Free-Free-Embossed Edges (LLLE). Thus, the objectives of this work are the assembly of an analysis

system using accelerometers (Model MPU 6050) in meshes (5x8 points) to verify the displacement of

x, y and z coordinates, spread over forty (40) points forming a mesh, and two (2) points with Geokon

@ 4150 vibrating string sensors horizontally and vertically.With these sensors it was possible to verify

the plate displacement dimension for both methods, as well as the difference between the experimental

analysis methods and their applicability in other projects.