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Abstract. This work presents an explicit formulation with adaptive time integrators, enhanced by sub-cycling, for
time domain analyses of hyperbolic models. The method is based on single-step displacement-velocity relations,
describing a truly self-starting, easy to implement technique. Its stability limit is the same as of the central differ-
ence method and it provides adaptive controllable numerical dissipation. Since the technique is explicit, it does
not need to consider any solver routine, standing as a very efficient methodology. Subdomain decomposition pro-
cedures, associated to multiple time-steps and sub-cycling, are also considered herein to improve the performance
of the formulation. In this case, a generic methodology is discussed, in which subdomain divisions and local time-
step values are automatically evaluated. At the end of the paper, numerical results are presented in comparison to
those of the central difference method and the explicit generalized α method, illustrating the effectiveness of the
discussed approach.
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1 Introduction

Time dependent hyperbolic equations are challenging to be solved and their analytical resolution is often
unfeasible. So, in order to solve these equations, numerical methods are commonly used to find approximate so-
lutions. These methods usually employ step-by-step time integration algorithms, solving initial value problems
considering a given temporal discretization. Numerical methods are essentially divided into two groups: explicit
methods [1–6], whose main advantage is that there is no need to treat systems of equations, making them very
effective in terms of computational effort, yet with stability restrictions; and implicit methods [7–11], which may
provide unconditional stability, but are considerably more computationally expensive per time step (for a compre-
hensive review, see [12]).

In this paper, an explicit formulation with adaptive time integrators is studied, considering the implementation
of sub-cycling techniques to improve the efficiency and accuracy of the proposed time integration algorithm. The
explicit method developed by Soares [13] is considered here as the key time-marching framework for the proposed
formulation. This method is based on single-step displacement-velocity relations; is truly self-starting; presents
the same stability limit as the central difference method (CDM); and, as an explicit approach, does not need to
consider any solver routine. In this work, as a further development to this solution procedure, subdomain divisions
and local time-step values are considered, also taking into account automated adaptive evaluations. Thus, more
efficient and accurate analyses may be enabled.

The adopted time integration procedure is based on an adaptive α parameter that focuses on providing an
effective numerically dissipative algorithm, aiming to eliminate the influence of spurious modes and to reduce
amplitude decay errors. In this sense, the α time integrators are adaptively computed taking into account the local
physical / geometrical properties of the spatial discretization, the local time-step value, and local previous time
steps results. Thus, by introducing different time-steps into the analysis (considering subdomain divisions and
sub-cycling techniques), the performance of the adaptive α evaluation may be also enhanced.

The techniques discussed in this work can be used to solve problems of different nature, however, here,

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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acoustic analyses and geophysical applications are focused. In geophysics, it is often necessary to directly analyse
very heterogeneous domains. In this sense, automatic sub-cycling techniques become very attractive, since that
different layers/media may be efficiently analysed considering proper subdomain divisions.

This article is divided into five sections, the first being this introduction. In the second section, the equations
that govern the time integration strategy are presented. In the third section, a generic automatic methodology for
sub-cycling is discussed. In the fourth section, two numerical applications are considered, illustrating the good
performance of the proposed technique (in this case, the obtained results are compared to those of the CDM and
of the explicit generalized α method (EG-α) [1], as well as with analytical solutions, whenever available). In the
fifth and final section, conclusions are presented.

2 Governing equations and time integration strategy

The governing system of equations describing a dynamic model is given by:

MÜ(t) + CU̇(t) + KU(t) = F(t), (1)

where M, C, and K are mass, damping, and stiffness matrices, respectively; Ü(t), U̇(t) and U(t) are acceleration,
velocity, and displacement vectors, respectively; and F(t) stands for the force vector. The initial conditions of the
model are given by: U0 = U(0) and U̇0 = U̇(0), where U0 and U̇0 stand for initial displacement and velocity
vectors, respectively.

In this work, the Finite Element Method (FEM) is used for the spatial discretization since geological problems
take great advantage of its ability to work with irregular geometries. By considering the standard FEM, the domain
of the problem is divided into elements, allowing the calculation of local matrices and vectors, which can then be
assembled to generate the global matrices M, C and K, and vector F.

For the time-domain solution of the system of equations (1), the following algorithm is proposed by Soares
[13]:
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where ∆t represents the time-step, and Un and U̇n are the approximations of U(tn) and U̇(tn), respectively. In
eq. (2a), the subscript e indicates that a variable is locally defined, at an element level. Once eq. (2a) is assembled,
the velocities of the model can be computed, and the displacements can then be evaluated following eq. (2b).

Considering the α parameter (see eq. (2a)), which controls numerical damping, the strategy is to adopt α > 1
wherever and whenever numerical damping may be necessary, and α = 1 otherwise. This is automatically carried
out here based on an oscillatory criterion. In other words, if the computed displacement response of a degree of
freedom of the model oscillates, numerical dissipation is introduced into the analysis. A ϕ parameter is calculated
(at each time step and for each element) to control the local activation of the numerical damping. The calculation
of this oscillatory parameter is given by: ϕn
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de stands for the total amount of degrees of freedom of the element. Thus, when the oscillatory parameter is not
null, at least one degree of freedom of the element is oscillating. In this case, the algorithm activates maximal
numerical dissipation at the maximal sampling frequency of the element Ωmax

e and, consequently, dissipates its
highest modes more effectively. So, when the ϕn

e parameter is different from zero, αn
e assumes the value provided

by the following expression:
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where ρe and ςe stand for physical properties of the medium (mass density and viscous damping coefficient,
respectively). For null ϕn

e values, αn
e = 1 is considered.
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3 Sub-cycling

Sub-cycling is a subdomain decomposition associated with computations at several time intervals. This tech-
nique allows a domain to be modelled considering different refinement levels without limiting its explicit time-
marching solution to be restricted to its shortest critical temporal discretization, allowing greater time-steps values
to be considered for different subdomains, enabling lower computational costs. However, this approach must be
properly considered, once excessive subdivisions may provide deterioration in both accuracy and efficiency. Here,
the following algorithm is considered to define the subdomain decomposition: (i) calculate the critical time-steps
of all elements, finding the smallest ∆te of the model (i.e., ∆t1, where ∆t1 = min(∆te)), which is the basic
time-step for the controlled subdivision of the domain; (ii) with ∆t1 defined, calculate subsequent time-step values
as multiple of the power of 2 of this minimal time-step value (i.e., calculate ∆ti, where ∆ti = 2(i−1)∆t1); (iii)
associate each element to an computed time-step value (i.e., to ∆ti, where ∆ti ≤ ∆te < ∆ti+1 and i indicates
the subdomain of that element); (iv) associate a time-step value (i.e., associate a subdomain) to each degree of
freedom of the model considering the lowest time-step value of its surrounding elements.

Once the subdomains of the model are stablished, displacement and velocity values along the boundaries
of these subdomains may be interpolated so that explicit time-marching solutions, considering different time-step
values, can be regularly carried out along the subdivided model. In this work, the following expressions are adopted
for these interpolations:

U(t) = 1
2∆t

(
U̇n+1 − U̇n

)
t2 + U̇nt+ Un, (4a)

U̇(t) = 1
∆t

(
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)
t+ U̇n, (4b)

where t is the current increment of time (0 ≤ t ≤ ∆t) for the focused subdomain and ∆t is the time-step value of
the degree of freedom being interpolated, which is related to other subdomain.

4 Numerical applications

In this section, two numerical applications are considered, briefly illustrating the performance and potential-
ities of the adaptive explicit time-marching technique with subcycling. First, a homogeneous acoustic model is
considered, and, subsequently, the propagation of acoustic waves in the Marmousi2 model by Martin et al. [14]
are analysed. The computed results are compared to those of the CDM, EG-α and α adaptive method without sub-
cycling. The EG-α is considered here since it is a very well-known dissipative method. In the following analyses,
lumped mass and damping matrices are always considered.

4.1 Application 1

In this first example, a physically damped, acoustic model is analysed. A constant unit pressure is prescribed
along the left boundary of the body and null pressure values are prescribed along the remaining boundaries. The
model is defined by an unitary side length, mass density and viscous damping coefficient, as well as a wave
propagation velocity of 10m/s. The symmetry of the problem is regarded and only its upper half is spatially
discretized by the FEM. The generated mesh is composed of 125000 elements and refinement towards the upper-
left border of the model is considered. The exact solution for this application can be found in Soares [13].

In Fig. 1, the obtained subdomain decomposition and active α values are depicted. In this context, in Fig.
1a and 1b , the ∆te and ∆ti values are described, respectively, whereas, in Fig. 1c and 1d, the resulting active α
values (see eq. 3) are depicted for analyses without and with this subdomain decomposition, respectively.

In Fig. 2, snap-shots of the results computed at time t = 0.125s and t = 0.25s are depicted, considering the
selected different time-marching techniques. As can be observed, the CDM and EG-α do not provide appropriate
results and spurious oscillations dominate the computed responses. On the other hand, appropriate results are
provided by the α−adap and α−adap/sub, demonstrating their good performance.

Table 1 shows the CPU times and the relative errors (computed at the middle of the model) for each approach.
It is noteworthy that the α−adap/sub method runs with different time-steps per subdomain and its largest time-step
value is provided in the table. As Table 1 indicates, the multiple time-step approach allows reducing the total CPU
time of the analysis in approximately 37%. In addition, by considering multiple time-step values, more appropriate
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α values can be computed (see Fig. 1d), allowing improving the accuracy of the analysis, as it is also described
in Table 1 (results are obtained using an Intel Core i7 -9750H 2.60GHz processor, with the multiplications of the
element stiffness matrices parallelized with OpenMP using 8 threads).

(a) ∆t for each element (∆te) (b) ∆t for each subdomain (∆ti)

(c) active α values for the α−adap (d) active α values for the α−adap/sub

Figure 1. Subdomain decomposition and active α values for the first example.

Table 1. Performance of the analyses for the first example

Method ∆t(10−5s) Steps Error (10−1) CPU time (s)

CDM 0.39903 6266 1.6369 274.570

EG-α 0.35963 6952 1.6195 288.130

α−adap 0.39903 6266 1.2314 273.420

α−adap/sub 1.59612 1567 1.1580 109.350

4.2 Application 2

In this second example, an extension of the original Marmousi model created by Martin et al. [14] is analysed.
The model has a lateral extension of 17 km and a depth of 3.5 km and includes a total of 199 geological layers, as
well as an extended water layer of 450 m deep. Here, the original finite difference synthetic data are transformed
into a FEM mesh with 224731 nodes and 223672 linear square elements. Since this FEM mesh is created from
a finite difference discretization, its elements are structured and they all have the same size. Thus, just the wave
propagation velocity of each material controls the variability of the element time-steps. In Fig. 3, the obtained
subdomain decomposition and active α values are depicted, analogously to Fig. 1.

Fig. 4 shows the computed fields along the model, taking into account the selected solution procedures, and
Table 2 describes the performance of the analyses. As one can observe, the subdomain decomposition and sub-
cycling techniques performed well for this complex heterogeneous model, allowing evaluating accurate solutions
at lower computational costs.
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(a) Exact solution at 0.0625s (b) Exact solution at 0.125s (c) Exact solution at 0.25s

(d) CDM at 0.0625s (e) CDM at 0.125s (f) CDM at 0.25s

(g) EG-α at 0.0625s (h) EG-α at 0.125s (i) EG-α at 0.25s

(j) α−adap at 0.0625s (k) α−adap at 0.125s (l) α−adap at 0.25s

(m) α−adap/sub at 0.0625s (n) α−adap/sub at 0.125s (o) α−adap/sub at 0.25s

Figure 2. Exact and computed fields along the discretized domain, at t = 0.0625s, 0.125s and 0.25s.

(a) ∆t for each element (∆te) (b) ∆t for each subdomain (∆ti)

(c) active α values for the α−adap (d) active α values for the α−adap/sub

Figure 3. Subdomain decomposition and active α values for the second example.
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Table 2. Performance of the analyses for the second example

Method ∆t(10−3s) Steps CPU time (s)

CDM 2.07273 700 43.320

EG-α 1.86808 780 49.260

α−adap 2.07273 700 43.060

α−adap/sub 4.14545 350 25.400

(a) CDM (b) EG-α

(c) α−adap (d) α−adap/sub

Figure 4. Computed fields along the discretized domain, at t=1.4s.

5 Conclusions

This paper describes an explicit fully-adaptive time-marching formulation for hyperbolic models. In this
approach, both time-step and time integrator values adapt to the properties of the discretized model, allowing pro-
viding a more efficient and accurate solution methodology. Two examples are discussed in this work, illustrating
the good performance of the proposed approach. As the examples demonstrate, the proposed formulation allows
obtaining better results than standard solution procedures, considering lower computational efforts. In the sec-
ond example, a complex heterogeneous model is studied, highlighting the robustness of the proposed automated
formulation for multiple time-step analyses.
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