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Abstract. Assuming kinematic accuracy on the migration velocity model, seismic least-squares migration seeks to
overcome the drawbacks of traditional migration algorithms by approximating the inverse imaging operator within
a linear inversion framework. In this paper, we combine reverse-time migration and the L-BFGS optimization
method to iteratively reconstruct the true subsurface reflectivity model from seismic reflection measurements. In
each iteration, the initial model is first demigrated using the Born approximation of the acoustic wave equation to
generate the predicted seismic data. Then, the reflectivity is updated by minimizing the least-squares misfit function
in the data domain. Furthermore, to speed up the convergence of the inversion algorithm, we preconditioned the
gradient by the illumination compensation operator. Numerical examples demonstrate that, even in the presence
of salt bodies, the inverse operator of the imaging problem can be used to obtain improved migrated sections with
reduced artifacts, better resolution, and reflectors with more balanced amplitudes.
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1 Introduction

To recover the true distribution of subsurface reflectivity, the seismic imaging process attempts to map the
signal from the data domain to the reflectivity domain, which requires the action of an inverse operator. However,
conventional migration techniques employ adjoint operators and imaging conditions to stabilize the migration of
defective seismic data over a previously estimated background velocity distribution. These simplifications, along
with limited bandwidth sources, under-sampled acquisition geometries, poor illumination and strong contrasts in
the velocity model, generate artifacts that decrease the quality of the final image.

Least squares migration (LSM) seeks to overcome these drawbacks by approximating the exact inverse oper-
ator with a generalized inverse operator in the framework of a linear least squares problem. Different studies have
shown its potential in reducing migration artifacts, removing acquisition marks, compensating for illumination,
and increasing the resolution of seismic sections (Wang et al. [1], Nemeth et al. [2]).

To ensure good convergence rates, LSM could use fast linear inverse solvers (e.g. the linear conjugate gradient
method), which require that the demigration and migration engines form an exact forward/adjoint operator pair,
enabling the calculation of an optimal descent direction and the analytical step-length (Ji [3]). In practice, however,
it is difficult to attain exact adjointness when computational subroutines imitate the action of matrix operators on
the reflectivity model, due to memory constraints. Moreover, if the demigration and migration subroutines do not
pass the dot product test (Claerbout [4]), convergence may be compromised. To circumvent this condition, it is
convenient to calculate the step-length with a numerical line search strategy that guarantees the robustness of the
optimization routines at each iteration by enforcing the sufficient decrease and curvature conditions (Nocedal and
Wright [5]). Additionally, the performance of the LSM algorithm may also benefit from second-order optimization
routines, which take into account the curvature of the objective function to scale the descent direction, providing a
superlinear convergence rate.

Recent works have proposed LSM based on quasi-Newton algorithms. For example, Wu et al. [6] introduced
a combination of the limited-memory Broyden–Fletcher–Goldfarb–Shanno method (L-BFGS) with least-squares
pre-stack Kirchoff depth migration. In this work, we focus on extending the implementation of LSRTM under the
L-BFGS method for pre-stack seismic data. Additionally, we show how including the illumination compensation
as a preconditioning term helps to optimize the inversion process.
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2 Theory

2.1 Conventional LSRTM

The first-order Born approximation of the two-way wave equation establishes a linear relation between the
subsurface reflectivity model and the scattered seismic wavefield. Under such approximation, the solution of
the following system of equations describes the LSRTM forward problem for the constant density acoustic wave
equation: 

(
s20(x)

∂2

∂t2
−∇2

)
u0(x, t) = f (t) δ (x− xf )(

s20(x)
∂2

∂t2
−∇2

)
δu(x, t) = −2s0(x)δs(x)

∂2u0(x, t)
∂t2

, (1)

where s0 and δs are, respectively, the background and perturbation slowness field, ∇2 denotes the Laplacian

operator, u0 is the background wavefield associated with the point source f(t) located at xf , and δu is the scattered
wavefield with only primary reflection components.

Since δu is scaled linearly by the product between the second derivative of the mainly down-going back-
ground wavefield and the terms associated with the slowness field, the forward modeling can also be expressed in
matrix-vector notation as:

d = Lm, (2)

where d is the modeled scattered seismic data recorded at the receiver locations, L is the kernel of the PDE system

in eq. (1) (also known as the demigration operator), and m = −2s0(x)δs(x) represents the true reflectivity model
as a function of the slowness perturbation.

The reverse time migration of seismic data (RTM) is considered to be the adjoint of the demigration operator.
Therefore, the relation

mmig = LTd, (3)

in which mmig represents the standard RTM image, gives a rough approximation of the true reflectivity. Usually,

eq. (3) is computed through the conventional zero-lag cross-correlation imaging condition (Whitmore [7]).
The LSRTM inverse problem is formulated by substituting eq. (2) into eq. (3) and solving for the true reflec-

tivity model:

m = (LTL)−1mmig,

m = (LTL)−1LTd,
(4)

which also represents the system of normal equations. In eq. (4), the Hessian matrix H = LTL is too computa-

tionally expensive to store or invert directly. Thus, we estimate its inverse iteratively by minimizing the quadratic
misfit function E(m), defined as the least-squares norm of the residual:

min
m∈IRn

E(m) =
1

2
‖Lm− dobs‖22, (5)

where dobs stands for the pre-stack observed seismic data. Finally, the iterative process is performed following the

recursion

mk+1 = mk + αk∆mk, (6)

where αk denotes the step length at each iteration k, and ∆mk is the descent direction, which can be found using

the L-BFGS algorithm (Nocedal and Wright [5]).

2.2 L-BFGS method

For the quasi-Newton methods, the descent direction of the iterative inversion is defined as:

∆mk = −Bkgk, (7)

where gk is the gradient of the misfit function, calculated through the migration of the data residual:
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gk = LT(Lmk − dobs), (8)

and Bk ≈ H−1 is an approximate Hessian inverse operator. Among the family of quasi-Newton methods, the

L-BFGS is the most popular algorithm due to its efficiency, specially in problems with large number of variables.
This method recursively calculates the product Bkgk with a limited number l of gradient and model vector pairs
without the need to explicitly form the matrix Bk. Starting from an initially estimated positive definite matrix B0,
and defining yk = gk+1 − gk and sk = mk+1 − mk, the descent direction for the kth iteration is calculated as
follows (Nocedal and Wright [5]):

Algorithm 1: L-BFGS calculation of descent direction ∆mk = Bkgk.

Input: gk e B0
k

begin
Define q = gk;
for i=k-1,...,k-l do

ρi = 1
yT
i si

vi = ρisT
i q

q = q− viyi

end for
∆mk = B0

kq
for i=k-1,...,k-l do

β = ρiyT
i ∆mk

∆mk = ∆mk + si(vi − β)
end for

end

When Algorithm 1 is applied to reflectivity imaging, we choose B0 as any approximation of the inverse of
the diagonal Hessian (Dai et al. [8]). In this work, we set B0 as the illumination compensation proposed by Plessix
and Mulder [9] because it is a diagonal matrix with positive elements and it is also cheap to compute since we
only require the background wavefield propagation, which is already available during the forward modeling step.
Furthermore, since LSM is a linear inverse problem, neither the background velocity model nor B0 change during
the iterative process.

3 Numerical experiments

In this section we present the results obtained by applying our pre-stack LSRTM algorithm on two modified
versions of the Sigsbee2a synthetic model (Paffenholz et al. [10]). For both datasets we simulate a pre-processing
step where the direct wave, the refracted waves and the surface-related multiple are removed from the pre-stack
seismic gathers, since those events cannot be predicted by the demigration operator. However, in order to avoid
the inverse crime, we keep the internal multiples. A Ricker wavelet with a peak frequency of 20 Hz is employed as
the source function and it is assumed as known during the inversion. The two models are discretized on a regular
finite difference grid with a gridpoint spacing of 5 m. The number of gradients stored for computing the L-BFGS
approximation is set to l = 5. Below, the LSRTM results are compared with the RTM images.

3.1 Diffracting points under a salt body

The first experiment consists of imaging 9 diffracting points located near the bottom of a region with a
smoothly varying velocity distribution and a high-velocity basement layer, as shown in Fig. 1. The model also
contains a salt body. Only the diffracting points are considered as the reflectivity perturbation to be imagined. In
other words, the background velocity model is the same as the true model without the presence of the diffracting
points. This configuration was chosen to evaluate the imaging performance of LSRTM under the preconditioned
L-BFGS method for subsurface targets near and under salt structures with complex geometries, where illumination
is limited. In addition, the diffracting points are fundamental elements in seismic imaging as they can be employed
to construct any complex reflector (Claerbout [4]). They also give a direct measure of image quality, particularly
resolution.

Least-squares migration has the potential for efficiently reconstructing the reflectivity model when applied to
incomplete data and poorly sampled shooting acquisitions, as it helps to reduce acquisition artifacts in a natural
way (Nemeth et al. [2]). For this reason, in this test, we set a fixed-spread geometry with 500 receivers buried at a
depth of 10 m, but only simulate 11 shots to emulate a seismic acquisition with poor source coverage.
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Figure 1. Velocity distribution for the diffracting points experiment.

Figure 2. RTM image.

Figure 3. RTM result after the implementation of a Laplacian filter.

Figure 2 shows the result of the conventional RTM imaging. The synthetic data used for the imaging step
only contains the up-going seismic wavefield produced by the diffracting points, since the other recorded events
in the original seismograms are canceled by the difference between the background wavefield and the observed
data during the pre-processing step, as shown in Fig. 6.c. Overall, the diffracting points are poorly imagined, the
most affected being those positioned in the lower right part of the model, where the illumination is limited. The
points on the left part of the image are tilted due to the presence of the salt body, that deflects the incident waves on
the right side of the model, making the illumination of this region asymmetrical. The points located at the center
are best imaged and most focused because the high-velocity basement layer produces the full internal reflection
effect for the sources on the left side of the model. Evidence of this phenomenon is the presence of the V-shaped
low-frequency artifact in the middle of the model, corresponding to the migration operator associated with the
reflected waves.

Additionally, it can be noticed that the image is contaminated with low-frequency, high amplitude noise,
produced by the high-velocity contrast in the model. We implement a Laplacian filter to remove such artifacts,
and the result is shown in Fig. 3. Note that low-frequency noise is reduced almost completely, but high-frequency
artifacts still remain in the image, and the diffracting points continue to have a blurred appearance and unbalanced,
asymmetrical amplitudes.

The result obtained by the LSRTM inversion are shown in Fig. 4.a and Fig. 4.b, for 20 iterations (preliminary
result) and 100 iterations (final result), respectively. Additionally, Fig. 5 shows the evolution of the objective
function in relation to the number of iterations.

Comparing both results in Fig. 4 is evident that later iterations contribute to improve the focusing of the
diffracting points and to reduce the presence of elements that are not part of true reflectivity model such as the
migration artifacts related to the salt body.

Finally, Fig. 6 shows how the L operator applied to the inverted reflectivity model produces reflections that
are much closer to the observed data, compared to the synthetic data obtained from the original RTM image.

3.2 Re-sampled Sigsbee2a model

The second test consist in applying the LSRTM with a precondtioned L-BFGS algorithm to a re-sampled
version of the original Sigsbee2a model in a grid with 1200 × 400 points. The observed data are generated using
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Figure 4. LSRTM inversion results. a) 20 iterations. b) 100 iterations.

Figure 5. Evolution of the LSRTM inversion for the 9 diffracting points model.

Figure 6. Comparison between synthetic seismograms calculated from Born modeling for a shot gather located at
x = 625 m. a) Demigrated data from initial RTM image. b) Demigrated data from LSRTM result (100th iteration).
c) Pre-stacked observed data.

Figure 7. True velocity distribution of the resampled Sigsbee2a model.
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the velocity model shown in Fig. 7. The background velocity field used for migration was obtained by applying a
smoothed gaussian smoothing filter on the real model. The true reflectivity model is shown in Fig. 8.

Initially, a conventional RTM migration was performed, simulating an acquisition with 601 shots separated at
10 m intervals, and 1200 fixed receivers buried at a depth of 10 m. The result in Fig. 9 shows that the reflectors are
contaminated by low-frequency artifacts, especially near the salt body. Figure 10 illustrates the migrated section
after applying a Laplacian filter. Note that some of the artifacts still persist after filtering, as well as lack of reflector
continuity.

The computational cost involved in multiple iterations of LSRTM is significantly higher than that of RTM.
Consequently, we only use a subset of 61 shots for this numerical test. The LSRTM image obtained as a result of the
iterative process is shown in Fig. 11, after applying a Laplacian filter. Compared to the conventional RTM section,
this result has fewer artifacts. For example, the large amplitudes at the top of the salt are dramatically decreased.
In addition, the edges of the image are better reconstructed, indicating that the inversion can compensate for model
regions with low signal multiplicity. This is also evident in the pre-salt area on the lower right side of the model
where reflectors that had not been imaged by the RTM operator are recovered despite the lack of illumination. It is
notorious that most reflectors have better continuity and more balanced amplitudes. Furthermore, it was possible
to obtain a higher resolution migrated section using only a subset of the total sources employed in the generation
of the initial RTM section (approximately one-tenth of the total shots).

However, some high-frequency artifacts with no geological meaning are still present in the inverted image.
As an example, it can be pointed out the left region under the salt flank at approximately 1 km of depth, where
vertical ringing artifacts cut the flat reflectors. Clearly, LSRTM could be benefit from a smoothed regularization
term to reduce these unwanted effects related to data over-fitting.

Finally, Fig. 12 shows the evolution of the objective function for the LSRTM inversion with and without the
presence of the illumination compensation as the preconditioned term. For the L-BFGS without preconditioning,
B0 was set as the identity matrix. It can be seen that the preconditioned L-BFGS offers better results at any stage
of the inversion and also reaches the local minima in fewer iterations, compared to the conventional L-BFGS.

4 Conclusions

In this work, we showed that it is possible to obtain improved resolution reflectivity distributions through the
L-BFGS algorithm, avoiding convergence problems associated with pseudo adjoint operators.

Regarding the numerical experiments performed in LSRTM inversion, it was possible to obtain sections with
significant improvements in the imaging of seismic horizons, especially in regions near the salt body in modified
versions of the Sigsbee2a model. Even though there is a considerable gain in amplitude balancing, focusing and
low-frequency noise reduction, it is concluded that it is necessary to incorporate smoothing techniques to reduce
high-frequency artifacts.
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Figure 8. True reflectivity of the resampled Sigsbee2 model.

Figure 9. RTM section obtained with the original dataset (601 shots).

Figure 10. Filtered RTM section.

Figure 11. LSRTM filtered section after 25 iterations. This result should be compared to the RTM image in Fig. 10

Figure 12. The curves of the normalized objective function over iterations.
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020


	Introduction
	Theory
	Conventional LSRTM
	L-BFGS method

	Numerical experiments
	Diffracting points under a salt body
	Re-sampled Sigsbee2a model

	Conclusions

