
 
 

CILAMCE 2020 

Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  

Foz do Iguaçu/PR, Brazil, November 16-19, 2020 

Finite Elements Method use for displacement calculus in trusses 

Chiquesi P. L. Amós1, Pegoretti dos S. Thaís1 

1Dept. of Civil Engineering, University of Araraquara 

Rua Carlos Gomes, 1338, Centro, 14801-340, São Paulo/Araraquara,Brazil 

aplchiquesi@uniara.edu.br, tdspegoretti@uniara.edu.br 

 

Abstract.The Finite Element Method (FEM) is a numerical procedure for analyzing structures and 

continuous media. It is a technique used to obtain approximate solutions of differential equations. Trusses are 

rigid elements whose definition is based on loads applied only to moorings (knots). This project proposes the use 

of the FEM in trusses in order to discover displacement values and the intensity of the tensile and compression 

forces in each element of the structure. Initially, the bar was studied and implemented, then the beam. In this 

work, one example is presented to illustrate the application of the FEM, for the case of a static analysis of a truss, 

using one-dimensional bar elements including bibliographic results.The stiffness matrixes of each element are 

presented and the global matrix assembly is developed. To compare the results of the example with a simulation, 

oneFtool® model is constructed and both results are compared. This project is able to expand the student's 

understanding of FEM, modelling and results interpretation. 

Keywords:FEM, displacement, trusses, global matrix. 

1. Introduction 

The Finite Element Method (FEM) was a system developed by Walter Ritz in 1909. His intention was to 

determine approximate results of problems in deformable solids. In 1943 Richard Courant applied new methods 

to the Ritz system, using linear functions over triangular shapes to solve torsion problems [1]. 

A priori, the commonly used MEF is based on the Ritz method that foresees the division of the domain of 

integration in continuous means in a finite number of small known regions and called finite elements. 

In this method, the model is divided into simple shapes, called finite elements, such as flat models, usually 

triangles or quadrilaterals. Fig. 1 illustrates a two-dimensional model of a continuous hollow structure with a 

hole in its upper area and its division into finite area elements. 

 

Figure 1 

  

Figure 1: Continuous structure exemplifying the Finite Element Method [2] 
 

This division according to the figure above is called a finite element network, which can be increased or 

decreased varying in size. Each point of intersection in this network is called a node. 

Through this methodology, it is possible to study structures from different areas: automobile, aeronautics, 

civil, among others. It is possible to determine the distribution of internal forces in the structures and their 

deformation, when subjected to external static or dynamic loading. 
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There are structural elements connected continuously. The continuous body is artificially subdivided into a 

certain finite number of elements, connected only in nodes, thus making the approximate representation of a 

continuous body. 

Trusses are frames formed by the connection of rigid elements, such as wood, steel and others. Its 

definition is based on loads applied only to the nodes (moorings), leaving the bars receiving only tensile or 

compression efforts. 

The origin of the trusses is believed to have been around the 18th century, but used and applied by 

Alexandre GrahamBell in 1907. And later being better developed for any applications [3]. 

The main elements that make up the trusses are, [4]; 

- Rope or flange: set of bars that limit the upper or lower truss; 

- Amount: vertical bar of the trusses; 

- Diagonal: bar with the axis coinciding with the diagonal of a panel; 

- Node: meeting point and joining the ends of the bars. 

Figure 2 represents a truss with the elements described above showing their respective locations. 

 

Figure 2 

 

 

 

 

 

 

 

 

 

Figure 2: Image exemplified with the types of bars that make up a trellis 

Figure 3 illustrates the image containing the magnitude of the modal shift of a truss generated by the 

commercial software RFEM ®. 

 

Figure 3 

 

 

 

 

 

 

 

 

 

 

Figure 3: Image by: RFEM, Representation of deformation of a bridge in RFEM,[5] 

The Fig 1 and Fig. 3 showed, there are commercial software(s) that calculate the internal forces and the 

displacements of the structures. The present work aims at a complete understanding of the MEF through its 

computational implementation using a relatively simple example: a trellis. 

In addition, after such understanding, the researcher will be able to make some analyzes with more property 

on the subject, such as: varying the type of finite element chosen, evaluating the influence of the quantity of 

elements used and even evaluating the possibility of including dynamic loads. 

 

2. Purpose 

The general objective of the work is to use the finite element method to calculate displacements in 

structures: bars, beams and trusses. 
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The specific objectives of this work are: 

- Improve research and scientific writing skills; 

- Increase knowledge about numerical methods for calculating internal forces and displacements in 

structures; 

- Develop programming skills. 

3. Methodology 

A bibliographic search on the finite element and structure method (bars, beams and trusses) is be carried out. 

One truss example is detailed studied and its results are be compared with examples already published in the 

references and with simulations in Ftool®. 

4. Development 

The main idea of finite elements is to divide the domain of an infinite problem into finite subdomains to obtain 

results about the element in question. 

4.1 Stiffness matrix of a bar 

It is a system of differentialand symmetric equations whose set with the Finite Element Method matrix 

equations are obtained. Its equation is obtained through: 

[𝐾𝑒]{𝑢𝑒} ={𝐹𝑒}                                                                      (1) 

Where [𝐾𝑒] is the Rigidity Matrix of an element, {𝑢𝑒} is the vector of nodal displacements, and {𝐹𝑒}nodal 

forces of the element. 

This matrix represents the relationship between nodal efforts and nodal displacements. 

4.2 Assembly techniques of the global system - Displacement method 

The displacement method consists of writing the global equilibrium equations from the local equations. It 

will be presented through the case study of this work. 

The purpose of this example is to illustrate the application of the Finite Element Method, for the case of a 

static analysis of a truss, using one-dimensional bar elements. 

Considering the problem of the flat truss, shown in Fig. 4, subject to two forces; one at node 3 and another 

at node 4; a roller at 2 that restricts vertical travel and a bezel at node 5 that restricts the two degrees of freedom 

(x and y) at that node. 

 

Figure 4 

 
Figure 4: Structure of a truss using one-dimensional elements of a bar 

The free degrees of freedom of the truss were numbered according to the Tab. 1. 

Table 1: Numbering of the structure's degrees of freedom 

Node X Y 

1 1 2 

2 3 - 
3 4 5 

4 6 7 

5 - - 
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Thus, for each of the 5 elements, a vector called LOC (location) was assembled, which organizes the 

numbers of degrees of freedom that relate to the nodes of each element. Then, the local stiffness matrix of each 

element is assembled and, from the LOC vector, the elements of the local matrix are allocated in the global 

matrix. In this way, the assembly of the global matrix is clearly presented, as follows. 

The location vector of element 1 is: 

                                                                             𝐿𝑂𝐶1 = [1 2 4 5]                                                             (2) 

The local matrix of element 1 is: 

                                                        [𝐾1] =

[
 
 
 
 
𝐾(1,1)

1 𝐾(1,2)
1

𝐾(2,1)
1 𝐾(2,2)

1

𝐾(3,1)
1 𝐾(3,2)

1

𝐾(4,1)
1 𝐾(4,2)

1

𝐾(1,3)
1 𝐾(1,4)

1

𝐾(2,3)
1 𝐾(2,4)

1

𝐾(3,3)
1 𝐾(3,4)

1

𝐾(4,3)
1 𝐾(4,4)

1
]
 
 
 
 

                                                          (3) 

 

The assembly of the elements of element 1 in the global matrix is: 

  

 
 

 

     (4)  

 

The location vector of element 2 is: 

                                                                          𝐿𝑂𝐶2 = [4 5 6 7]                                                                (5) 

The local matrix of elements 2, 3, 4, 5, 6 and 7 were built similarly to the local matrix of element 1, so 

they are not presented in the following development. 

The assembly of the elements of element 2 in the global matrix is: 

 

 

 
 

                                                              (6) 

 

The location vector of element 3 is: 

𝐿𝑂𝐶3 = [1 2 6 7]                                                             (7) 

The assembly of the elements of element 3 in the global matrix is: 

 

 

 

 

                                    (8) 

 

The location vector of element 4 is: 

𝐿𝑂𝐶4 = [1 2 3 0]                                                (9) 

 

 

 

 

[𝐾1] = 

𝐾(1,1)
1  𝐾(1,2)

1  0 𝐾(1,3)
1  𝐾(1,4)

1  0 0 

𝐾(2,1)
1  𝐾(2,2)

1  0 𝐾(2,3)
1  𝐾(2,4)

1  0 0 

0 0 0 0 0 0 0 

𝐾(3,1)
1  𝐾(3,2)

1  0 𝐾(3,3)
1  𝐾(3,4)

1  0 0 

𝐾(4,1)
1  𝐾(4,2)

1  0 𝐾(4,3)
1  𝐾(4,4)

1  0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

 
[𝐾2] = 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 𝐾(1,1)
2  𝐾(1,2)

2  𝐾(1,3)
2  𝐾(1,4)

2  

0 0 0 𝐾(2,1)
2  𝐾(2,2)

2  𝐾(2,3)
2  𝐾(2,4)

2  

0 0 0 𝐾(3,1)
2  𝐾(3,2)

2  𝐾(3,3)
2  𝐾(3,4)

2  

0 0 0 𝐾(4,1)
2  𝐾(4,2)

2  𝐾(4,3)
2  𝐾(4,4)

2  

 
[𝐾3]= 

𝐾(1,1)
3  𝐾(1,2)

3  0 0 0 𝐾(1,3)
3  𝐾(1,4)

3  

𝐾(2,1)
3  𝐾(2,2)

3  0 0 0 𝐾(2,3)
3  𝐾(2,4)

3  

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

𝐾(3,1)
3  𝐾(3,2)

3  0 0 0 𝐾(3,3)
3  𝐾(3,4)

3  

𝐾(4,1)
3  𝐾(4,2)

3  0 0 0 𝐾(4,3)
3  𝐾(4,4)

3  
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The assembly of the elements of element 4 in the global matrix is: 

 

 

 

 

                                                                               (10) 

 

The location vector of element 5 is: 

𝐿𝑂𝐶5 = [3 0 6 7]                                            (11) 

The assembly of the elements of element 5 in the global matrix is: 

 

 

 

                                                            (12) 

 

 

 

 

The location vector of element 6 is: 

𝐿𝑂𝐶6 = [3 0 0 0]                                                       (13) 

The assembly of the elements of element 6 in the global matrix is: 

 
 

 

                                                (14) 

 

 

The location vector of element 7 is: 

𝐿𝑂𝐶7 = [6 7 0 0]                                                     (15) 

The assembly of the elements of element 7 in the global matrix is: 

 

 

 

 

(16) 

 
 

 

 

 

 

 

 

 

 

 

 
 

[𝐾4] = 

𝐾(1,1)
4  𝐾(1,2)

4  𝐾(1,3)
4  0 0 0 0 

𝐾(2,1)
4  𝐾(2,2)

4  𝐾(2,3)
4  0 0 0 0 

𝐾(3,1)
4  𝐾(3,2)

4  𝐾(3,3)
4  0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

[𝐾5]= 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 𝐾(1,1)
5  0 0 𝐾(1,3)

5  𝐾(1,4)
5  

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 𝐾(3,1)
5  0 0 𝐾(3,3)

5  𝐾(3,4)
5  

0 0 𝐾(4,1)
5  0 0 𝐾(4,3)

5  𝐾(4,4)
5  

[𝐾6]= 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 𝐾(1,1)
6  0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

[𝐾7] = 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 𝐾(1,1)
7  𝐾(1,2)

7  

0 0 0 0 0 𝐾(2,1)
7  𝐾(2,2)

7  
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Thus, the final global matrix becomes: 
 

 

5. Results 

The truss of Fig. 4 simulated data are: Young modulus 1,99.109 N/m2, section area 0,009 m2 and Poisson 

coefficient 0,3 [6].The comparison results obtained in the reference were displacements and reaction forces 

that are listed in Tab. 2, with the simulation results obtained in Ftool®.It is possible to observe that the 

maximum error is 1,93%, in the Displacement 2, so the results were considered equivalent. Figure 5 illustrates 

the deformed configuration of the truss includingits reactions. 

Table 2: Comparison between reference and simulation. 

 Reference Simulation Results Error % 

Displacement 1 0,749.10-4 m 0,740.10-4 m 1,20 

Displacement 2 -1,087.10-4 m -1,066.10-4 m 1,93 

Displacement 4 -0,155.10-4 m -0,154.10-4 m 0,65 

Displacement 5 -1,633.10-4 m -1,613.10-4 m 1,22 

Reaction in node 2 8000 N 8000 N 0 

Reaction in node 5 -5500 N -5500 N 0 

 

 

𝐾(1,1)
1 + 𝐾(1,1)

3 + 𝐾(1,1)
4  𝐾(1,2)

1 + 𝐾(1,2)
3 + 𝐾(1,2)

4  𝐾(1,3)
4  𝐾(1,3)

1  𝐾(1,4)
1   

 
  

𝐾(2,1)
1 +𝐾(2,1)

3 + 𝐾(2,1)
4  𝐾(2,2)

1 + 𝐾(2,2)
3 + 𝐾(3,2)

4  𝐾(2,3)
4  𝐾(2,3)

1  𝐾(2,4)
2   

 
  

𝐾(3,1)
4  𝐾(3,2)

4  𝐾(3,3)
4 + 𝐾(1,1)

5 + 𝐾(1,1)
6  - -  

 
  

𝐾(3,1)
1  𝐾(3,2)

1  - 𝐾(3,3)
1 + 𝐾(1,1)

2  𝐾(3,4)
1 + 𝐾(1,2)

2  ... 
... 

  

𝐾(4,1)
1  𝐾(4,2)

1  - 𝐾(4,3)
1 + 𝐾(2,1)

2  𝐾(4,4)
1 + 𝐾(2,2)

2   
 

  

𝐾(3,1)
3  𝐾(3,2)

3  𝐾(3,1)
5  𝐾(3,1)

2  𝐾(3,2)
2   

 
  

𝐾(4,1)
3  𝐾(4,2)

3  𝐾(4,1)
5  𝐾(4,1)

2  𝐾(4,2)
2   

 
 

  

𝐾(1,3)
3  𝐾(1,4)

3  

𝐾(2,3)
3  𝐾(2,4)

3  

𝐾(1,3)
5  𝐾(1,4)

5  

𝐾(1,3)
2  𝐾(1,4)

2  

𝐾(2,3)
2  𝐾(2,4)

2  

𝐾(3,3)
2 + 𝐾(3,3)

3 + 𝐾(3,3)
5 + 𝐾(1,1)

7  𝐾(3,4)
2 + 𝐾(3,4)

3 + 𝐾(3,4)
5 + 𝐾(1,2)

7  

𝐾(4,3)
2 + 𝐾(4,3)

3 + 𝐾(4,3)
5 + 𝐾(2,1)

7  𝐾(4,4)
2 + 𝐾(4,4)

3 + 𝐾(4,4)
5 + 𝐾(2,2)

7  
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Figure 5: Deformed configuration of the truss including its reactions 

 

The reference and simulation displacement numbers in Tab. 2 are really close, while the reaction values are 

exactly the same. So the model was considered correct. 

6. Conclusion 

In this work, the FEM method was applied in a truss example. First, the stiffness matrix of each element 

was presented and a methodology to build the global matrix was shown. Each free degree of freedom was 

numbered and the truss elements were related to them in order to assembly the stiffness matrix of each element 

um the global stiffness matrix. 

Then, the truss was modeled in Ftool®. The joints that permit rotation among the elements were included in 

all nodes, so the elements do not suffer shear stress or bending moment. Theoretical results for displacements 

and reaction forces were compared to the simulated ones and the greatest error valued 1,93% and the reaction 
forces errors were 0%, so the model was considered correct. 

Future work can be projected with this knowledge base: 

1. Implement the methodology to build the global matrix in another software such as Matlab®; 

2. Analyze different structures: porticoes and grids; 

3. Consider dynamic efforts; 

4. Study a real truss using the same methodology. 
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