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Abstract. The representation of the mechanical behavior of reinforced concrete structures aims to describe the 
physical reality as accurately as possible, which for there are many available theories. Besides that, to go further 
in those researches of physical representation, there are postulated formulations based on the science of 
thermodynamics, which link the influence of mechanical behavior in the development of physical phenomena and 
vice versa, through a systematic procedure that allows the determination of thermodynamic forces associated with 
the state variables, which are able to represent these phenomena. Therefore, the model here presented is 
underpinned on thermodynamic models that describe physical phenomena of reinforced concrete structures and 
proposes a new damage law that allows the observation of the cracking evolution. A new cracking resistance 
function that describes the energy release rate during the damage evolution is established since this new damage 
law comes now from Gibbs Free Energy. Finally, in order to evaluate the accuracy of the new model, the results 
obtained by the proposed model are compared with those given by the Lumped Damage Mechanics theory, which 
presents itself as an efficient tool to describe the cracking appearance and evolution, for both analysis and 
computational implementation. 

Keywords: thermodynamics of frames, reinforced concrete, cracking evolution, lumped damage mechanics. 

1  Introduction 

According to Soares et al. [1] , the reinforced concrete is one of the main structural and engineering materials 
used nowadays and belongs to a research field that has gained notoriety during the past century due to the fact that 
the engineers started to look for security and economy in the civil industry. 

In order to have an acurrate description of the structural behavior there are proposed non linears theories, 
such as the plasticy theory, fracture mechanics and damage mechanics for example (Amorim [2]). Another theory 
avaliable is the Lumped Damage Mechanics (LDM), which considers the damage variable and plasticy coupled 
into plastic hinges (Flórez-López, Marante and Picón [3]). 

In addition, the mechanical behavior of the materials can be related to a thermodynamic behavior. While the 
object of study of the mechanics as a part of physics is the scientific comprehension of the bodies movements, the 
thermodynamics belongs to another field that investigates both transformation and exchange of energy (Haupt 
[4]). Therefore, in order to obtain a formalism it is possible to adopt the approach of the thermodynamic of 
irreversible process by introducing state variables, where a defined thermodynamic potential allows the definition 
of these state variables to the study phenomenon, which leads to the state laws (Lemaitre and Chaboche [5]). 

In consequence, the model presented herein is based on thermodynamic formulations that are available in the 
literature, as the works done by Dahmer [6] and Brant [7], and it is capable of evaluating the physical phenomenon 
of cracking, by proposing a new damage law, which is provided directly from the Gibbs Free Energy.  
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2  Initial Concepts 

2.1 Planar frame analysis 

In a planar frame each node has three generalized displacements (Fig. 1a) which generates the matrix {U}! =
{u", w", θ", … , u#, w#, θ#}. In order to characterize the modification of the structure, the deformation matrix {Φ}$! =
+ϕ%, ϕ&, δ.	is introduced as well the generalized stresses matrix {M}$! = +m%, m&, n., as also shows Fig. 1a.  

 

 

(a)  

 

(b)  

Figure 1. (a) Planar frame and generalized displacements; (b) Lumped damage model. 

The matrix of external forces is defined by the matrix {P}! = {Ru", Rw", M", … , Ru#, Rw#, M#} where Ru# are 
the horizontal forces; Rw# are the vertical ones and M# are the external moments. Flórez-López, Marante and Picón 
[3] defined the kinematic equation that relates the member displacements {U} with the generalized deformations 
{Φ} through the consideration of the kinematic transformation matrix [B]$. The relationship between the 
displacements and deformations is showed in eq. (1). According to the same authors, the equilibrium equation in 
cases where the inertial forces are neglected is given by eq. (2). 
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 ∑[𝐵]'({𝑀} = {𝑃}      (2) 

2.2 Lumped Damage Mechanics (LDM) 

The (LDM) is based on concepts of fracture mechanics and classic damage, and allows to describe what can 
be observed in the physical reality through the quantification of the structural damage. It represents the mechanical 
behavior by taking into account the internal variable of damage (𝐷)' = (𝑑) , 𝑑*) lumped into the plastic hinges, 
which are called inelastic hinges, as can be seen in Fig. 1b (Flórez-López, Marante and Picón [3]). 

2.3 Essential elements of Thermodynamics of Frames 

Dahmer [6] and Brant [7] based their works in the main concepts of Thermodynamics of Solids proposed by 
Lemaitre and Chaboche [5] and wrote the fundamental concepts that structures and give form to Thermodynamics 
of Frames. Such concepts are, for example, the principal of virtual power; the first and second principles of the 
Thermodynamics of Frames; and the State Laws. 

According to Mazars and Pijaudier-Cabot [8], one of the main advantages of the thermodynamic method is 
the thermodynamic potential that can be chose accordingly to the necessities of the study. In this sense, the authors 
opted for the Gibbs Free Energy (𝐺!) , which is a thermodynamic potential that can be written as a function of the 
generalized stresses 𝑀, of the absolute temperature 𝑇 and also of the internal variables 𝑉" (𝐺#̇ = (𝑀, 𝑇, 𝑉")). As 
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presented in their works, the last term 𝑉" could refer to the plastic rotation 𝛷$ or to the damage variable 𝑑, for 
example. In this sense, it could be obtained a relationship that allows to observe if the process is thermodynamically 
admissible or not (eq. 3), where the variable S! is the entropy of the system. 
 

 �̇�' − +�̇�.
({𝛷} − 𝑆'�̇�' ≥ 0      (3) 

From the knowledge of such mentioned postulations, both authors were able to arrive in the determination of 
the State Laws. Lemaitre and Chaboche [5] affirm that once the thermodynamic potential is defined it is possible 
to postulate these Laws, which permit the association between the thermodynamic forces to the internal variables. 
Deriving the function 𝐺#̇ = (𝑀, 𝑇, 𝑉") with respect to time and combining it with eq. (3), the expression showed 
in eq. (4) is obtained (Dahmer [6] and Brant [7]). 
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When reversible process is considered, the rate of the internal variables assumes the value of zero !"𝑉!̇%" = 0(, 

where there is no energy dissipation, and, a isothermal process is also considered, then �̇�' = 0. So, the first State 
Law is established. Similarly, if a reversible process with only temperature change is taken into account, the second 
State Law is defined; and, for formality, the last Law is written to express the thermodynamic force 𝐴+ associated 
to the internal variables	𝑉+. The set of related equations is then presented: 
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3  Elastoplastic Model Based on the Thermodynamics of Frames 

The proposed thermodynamic potential is a function of the generalized stresses, of the plastic rotations and 
of the damage variable, 𝐺' = 𝐺'({𝑀},𝛷,, 𝑑), as follows: 
 

					𝐺' =
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The constants here presented are 𝑞, which depends of the characteristics of the element, and 𝑐, which is a 

constant of integration. The matrix [𝐻(𝐷)] represents the kinematic hardening and the matrix [𝐹(𝐷)] is the 
flexibility matrix, where both consider the damage variable, just as presented in Dahmer [6] and Brant [7]. 
However, in this model, differently from the thermodynamics formulations of the same authors, the energy release 
rate of a structural element is defined by: 
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Through the Griffith criterion it is determined that during the process of damage propagation, the values of 

the energy release rate must be equal to the values of the crack resistance. Then, the damage evolution must respect 
the equality showed in eq. (8), where, as can be seen, the crack resistance equation 𝑅(𝑑) for this model is different 
than the one used in LDM, as well as the one used by Dahmer [6] and Brant [7]. 
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Deriving the chosen potential (eq. 6) with respect to moments, just as defined by the State Laws, the elasticity 

law is obtained: 
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Furthermore, deriving the same potential with respect to the internal variable of plastic rotations and also 
with respect to the damage variable, eqs. (10) and (11) are obtained, respectively.  
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As a result, the first relationship shows the thermodynamic force {𝐴,} related to the plastic rotations, and the 
second one the driving force {𝐴.} related to the damage variable. Then, the yield function is expressed by the eq. 
(12), where 𝑘0 is another parameter of the model. 

 
𝑓, = |𝐴,| − (1 − 𝑑)𝑘: ≤ 0	𝑜𝑟	 

𝑓, = |𝑚 − (1 − 𝑑)ℎΦ5| − (1 − 𝑑)𝑘0 ≤ 0 
(12) 

The damage evolution law (eq. 13) is written in agreement with the Griffith criterion, once the values of 
energy release rate are equal to the crack resistance in case that there is damage propagation. 
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 The computation of the parameters 𝑅:, 𝑞, ℎ e 𝑘:, as well as the determination of the values of plastic 
damage (𝑑,) and ultimate damage (𝑑<) can be defined by a system of nonlinear equations that are better detailed 
and explained in the undergraduate thesis of the first author of this paper. Such thesis is currently in development. 

4  Example 

In order to validate the purposed model, two different simulations were made: one considering the (LDM) 
and the other considering the model presented in the previous section, which is based on the Thermodynamics of 
Frames (TFM). The input data for both simulations is justified and compared in Tab. 1, where the Updating 
technique, that is showed in Kim and Park [9] and Chen and Metwally [10], was used willing to decrease the 
incertitude and to adjust the parameters so that the simulations coincide in the most reliable way with the observed 
experimental properties. 

Table 1. Comparison between the input values used of each simulation. 

 LDM TFM 
Property Beams Columns Beams Columns 

 E (Y. Modulus, tn/m²) 7.92889x10% 4.586667x10% 8,106667x10% 8,54016x10% 
Mcr (Critical Moment, tn.m) 25.316 15.2177 25.316 15.2177 
Mp (Plastic Moment, tn.m) 48.6192 39.44 58.6192 40.44 

Mu (Ultimate Moment, tn.m) 75.005 72.6192 80.005 78.6192 
𝛷$* (Ultimate Plastic Rotation) 0275 0.336 0.275 0.336 

  
It is important to highlight that the TFM has a different damage evolution law as well as a different set of 

equations that allows the computation of the involved parameters. For the LDM, these parameters values were 
obtained according to Flórez-López, Marante and Picón [3]. Table 2 shows the calculated values for both models, 
where 𝑑# is the plastic damage value and 𝑑$ is the ultimate damage value.  

The schematic representation of the elements and nodes that compose the analyzed structure is presented in 
Fig. 2: it was considered that in the first level the structure was being pushed (positive direction of x-axis), while 
in the second one it was being pulled (negative direction of x-axis). Then, simultaneously, the displacement value 
on node 2 was increased while on node 3 it was decreased. In this way, it could be observed that the damage first 
appeared on the columns (which bending stiffness is lower than the beams one) in the following sequence: hinges 
22, 45, 12, 23, 44, 55, 11, 56, 33 and finally 34. 
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Figure 2. Structure representation, with its respective nodes and elements. 

Table 2. Parameters 𝑅&, 𝑞, ℎ e 𝑘& for each simulation, as well as 𝑑'	and 𝑑(  

                     LDM                TFM 
Parameter Beams Columns Beams Columns 
 𝑅& (tn.m) 0.5747x10)* 0.2393x10)* 0.5621x10)* 0.2221x10)* 

𝑞 -1.349676028 -1.472740264 6.826481453 7.7438465727 
ℎ (tn.m) 661.6001508 536.5416752 1386.798644 1349.4547724 
𝑘& (tn.m) 56.18754316 43.88873470 83.51040128 57.631887965 

𝑑' 0.1346978842 0.101363931 0.298066852 0.2983061599 
𝑑( 0.6200193222 0.627640854 0.806391483 0.8461622635 

 
Figure 3a and 3b shows the damage evolution for each hinge considering LDM and TFM, respectively. It 

can be noticed that the TFM gives bigger values of damage: while in LDM 𝑑% = 0.11 and 𝑑< ≅ 0.62, in TFM 𝑑% =
0.29 and 𝑑< ≅ 0.82. 

 
 
 
 
 
 
 

 

Figure 3. (a) Relationship between Damage and Displacement for (a) TFM and (b) LDM. 

For both levels (1 and 2) it was possible to establish a relationship between force and displacement, 
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quantifying the bending stiffness loss of the structure due to the crack growth in each unloading process. Figure 
4a and 4b shows these phenomenon for TFM and LDM, respectively. 
 

 

 
 

Figure 4. (a) Relationship between Plastic Rotation and Displacement for (a) TFM and (b) LDM. 

5  Conclusions 

The present model defined a new damage evolution law that derivates from the fundamental relationships 
from the science of Thermodynamics and added to that the model has an exchange of information with an existing 
model for cracking evaluation, which is the LDM. In other words, even though the new proposition comes from a 
different path than LDM, which is based in the concept of complementary potential energy, it still considers the 
same kinematic relationships as well as some constitutive equations (elasticity and plasticity laws). 

Due to the consideration of the Gibbs Potential, new relationships to the computation of the parameters were 
required. The Updating technique, that was utilized in order to improve the modeling, presented itself as a suited 
form for obtaining these values. 

Once the new damage evolution law was taken into account, the model required different considerations than 
the ones from LDM, as the energy release rate along the damage evolution and consequently a resistance function 
that could allow the Griffith criterion to be respected. The purposed resistance function showed itself as a 
satisfactory alternative, once the simulation results for damage propagation and the bending stiffness penalization 
were similar to the experimental results.  

It is necessary to point up that the range for plastic and ultimate damage in TMF is relative different from 
LDM. However, through the relationships of force and displacement it could be noticed that this difference exists 
due to the fact that the models have descriptions of the behavior of the damage variable that are distinct from each 
other, but even in this way, the TMF properly reproduces the stiffness loss due to the displacement increments that 
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the structure is subjected to. 
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