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Abstract. The present work aims at the implementation and validation of a numerical formulation based on the
Strain Compatibility Method (SCM) for the calculus of the cross-section’s resistance capacity of steel-concrete
composite beams with partial shear connection. It is developed, here, a strategy for capturing the longitudinal
deformations at all cross-section’s points. Thus, the section’s discretization, isolating the steel profile from the
concrete slab, is necessary. In this context, the classic SCM is modified by the insertion of one explicit degree of
freedom at the steel-concrete interface, corresponding to a discontinuity on the deformations field, allowing the
longitudinal sliding between the steel profile and the concrete slab. Therefore, the axial force dismemberment is
done, on which a part is absorbed by the profile and the other part by the slab. By equilibrium, the difference
between the slab’s and profile’s forces generates a shear force at the connection and, using the Ollgaard’s model,
the longitudinal sliding at the contact point, is found. Assuming the plane cross-section theory, a single curvature
is assigned to both constituents of the section. Thereby, it is done the construction of the moment-curvature
relationship using the standard Newton-Raphson method combined with continuation strategies aiming to capture
the hardening and softening of the materials over the loading historic of the section. However, in order to implement
the analysis, exclusively, in the cross-section, a fixed degree of freedom is assigned to it. For the validation of the
proposed numerical formulation, the obtained results are confronted with numerical data available in the literature.
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1 Introduction

In addition to the geometric, material and beam-to-column connection non-linearities, the steel-concrete com-
posite structural elements may also presents partial shear connection. According to Lemes [1], partial interaction
is understood as non-linearity in the shear connection at the interface between materials, which is treated as de-
formable. In this sense, the degree of composite action becomes an important property since it can define how
rigid this connection will be.

If there is a slip at the steel-concrete interface, the interaction is defined as partial. For composite beams, this
condition is characterized by the non-monolithic behavior of the element. This reduces the strength and stiffness
of the structural element, but the reduced number of connectors provides savings.

Among the methods of simulating the effect of partial interaction, there are those that considered interface
elements [2, 3], and those that consider partial shear connection within the formulation of a frame element Battini
et al. [4], Chiorean and Buru [5]. For the second described case, it is necessary to have a procedure for analyzing
the fibers of the elements or of the cross section at a nodal point.

This study aims to develop a numerical formulation for the evaluation of cross sections of steel-concrete
composite beams with partial interaction. Thus, the strain compatibility method based on Euler Bernoulli’s theory
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and presented in Lemes et al. [6] is modified by introducing an additional degree of freedom in the cross section
describing the sliding in the steel-concrete interface. Thus, it will be possible to analyze the behavior of a cross
section at a specific point in a structural element, allowing structural analysis by concentrating the effect of partial
interaction at the nodes.

2 Cross sectional analysis

The Strain Compatibility Method (SCM) is a Euler-Bernoulli-based approach for the evaluation of compact
cross-sections. When under external loads, a structure will gradually deform until it reaches equilibrium. Once
the internal forces equal the external forces, the deformation stops. This deformation, at the cross-section level, is
studied by SCM [6].

To make an accurate analysis of cross-sectional nonlinear behavior under external loads, a correct description
of the materials behavior is required. The steel section material is described by a trilinear constitutive model being
possible to consider the material strain hardening effect. The residual stress models are disregarding in this study.
The concrete and reinforcing bars are considered using the uniaxial behavior described in Lemes et al. [6].

2.1 Cross sectional degrees of freedom

Two situations are considered here: a bare steel section; and a steel-concrete composite beam with a linear
degree of composite action. In both situations, to describe the strain distribution, the cross-section discretization
in fibers, shown in Figure 1, is very efficient [6, 7]. It is done to capture the axial strain, ε, in the plastic centroid
(PC) of each layer, and then (through the material constitutive relationships) to obtain the respective stresses, σi.

concrete slab

steel section

jth slab fiber

ith steel section fiber

Figure 1. Cross section discretization

In a steel-concrete composite beam section with partial shear connection, the strain field is discontinuous
in the steel-concrete interface as showed in Figure 2. Thus, the linear equations that describe the cross sectional
deformed shape, in slab (εi,slab) and steel section (εi,steel) are expressed as a function of the axial strain in PC of
the slab, εc, and PC of the steel section, εs, respectively. That is:

εi,l = εc + Φ (yi − dslab)

εi,p = εs + Φ (yi − dsteel)
(1)

where dslab and dsteel are the distances of the section PC to slab PC and steel section PC, respectively.
In the matrix notation that follows, εc, εs and Φ are three degrees of freedom of the steel-concrete composite

beam section and are components of the strain vector X, described as:

XT = [εc εs Φ] (2)

Exactly as done previously, the internal force vector for this case is expressed by the classical integration and
discretized sums representing the reinforcing bars in concrete slab. Thus:
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Figure 2. Descontinuous strain field

fint =



Nint,slab =

∫
Al

σ [εl (εc,Φ)] dA+

nb∑
i=1

σi [εl (εc,Φ)]Ari

Nint,steel =

∫
Aa

σ [εp (εs,Φ)] dA

Mint =

∫
Al

σ [εl (εc,Φ)] ydA+

∫
Aa

σ [εp (εs,Φ)] ydA+

nb∑
i=1

σi [εl (εc,Φ)] yiAri


(3)

with Ari being the ith reinforcing bar area and nb is the number of reinforcing bars. The materials constitutive
relationship can be seen in Lemes [1].

In the case of the structural element with partial shear connection, the external axial force is dismembered
being part acting on the slab, Next,slab, and another part acting on the steel section, Next,steel. The quantification
of the absorbed portions by each component of the cross section is valued considering the possibility of slipping at
the steel-concrete interface. Thus, the element external forces, including the total axial force (N ) and the external
bending moment (Mext), can be writing as:

fext =


Next,slab

Next,steel

Mext

 =


Next,slab

N −Next,slab

Mext

 (4)

The axial force absorbed by the concrete slab can be defined as a fraction of the portion that would be
absorbed if there were full interaction between steel and concrete, Nfull

slab [5]. The reduction factor is defined by
f (γ), described as a function of the degree of composite action, γ. So the axial force on the slab considering
deformable shear connection is:

Next,slab = f (γ)Nfull
slab (5)

The function of degree of composite action, f (γ), is a constant value defined as a input data.

2.2 Moment-curvature relation

In describing the strain distribution, the cross section discretization in the layers section, shown in Fig. 1 is
very efficient. It is done to capture the axial strain, ε, in the center of each fiber, and then (through the material
constitutive relations) to obtain the respective stresses. Thus, the axial strain in ith layer can be obtained as
discussed in Subsection 2.1 of this paper.

The cross sectional deformed shape is calculated by the equilibrium of the external, fext, and internal, fint,
forces that can be numerically expressed by the following nonlinear equation:
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F(X) = fext − fint ∼= 0 (6)

with F and X being the equilibrium force vector and strain vector, respectively. All of this parameters are dependent
of the number of degrees of freedom of the section, as discussed in 2.1. Applying the expansion in Taylor series in
Equation 6, results in the following set of nonlinear equations:

F(X) = F’(X)∆X (7)

where F’ is the Jacobian matrix of the nonlinear problem, that is:

F’(X) = −∂F(X)

∂X
(8)

Although it is efficient to start the process with X = 0, convergence is achieved only in the first iteration if
external forces are null. Thus, for the next iteration (k + 1), the strain vector is calculated by the Newton-Raphson
method as:

Xk+1 = Xk −
[
∂F(X)

∂X

]−1

F(Xk) (9)

The iterative process described in this section for a given external forces is illustrated in Figure 3.
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Figure 3. Moment-curvature relationship

2.3 Generalized stiffness parameters

In the set of equations form, the Equation 7, can be defined as follows:


∆Nslab

∆Nsteel

∆M

 =


∂Nint,slab

∂εc

∂Nint,slab
∂εs

∂Nint,slab
∂Φ

∂Nint,steel
∂εc

∂Nint,steel
∂εs

∂Nint,steel
∂Φ

∂Mint

∂εc

∂Mint

∂εs

∂Mint

∂Φ




∆εc

∆εs

∆Φ

 (10)

In the steel-concrete composite beam section with partial shear connection, the axial stiffness is calculated by
the sum of the slab (EAslab) and steel section (EAsteel) axial stiffnesses, such as:

EAT = EAslab + EAsteel (11)
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being:

EAslab =
∆Nslab

∆εc

∣∣∣∣
∆M=0

; EAsteel =
∆Nsteel

∆εs

∣∣∣∣
∆M=0

(12)

The effective flexural stiffness of the section, EIeff , is expressed as an explicitly dependent of the function
of the degree of composite action [1, 5]. Thus:

EIeff =
EInullT

1 − f (γ)

(
EIfullT − EInullT

EIfullT

) (13)

2.4 Bending moment capacity

The ultimate bending moment capacity is obtained before the structural analysis (out of incremental-iterative
cycle, discussed in Lemes [1] and Lemes et al. [7]. This strategy is adopted to reduce the execution time of the
numerical simulations. Thus, the procedure described in Subsection 2.2 is made for each increment of bending
moment until it singularizes the Jacobian matrix (Eq. 3). Herein, the incremental strategy is given by [8]:

Mj+1 = Mj + ΦEI (14)

in which the index j refers to the previous increment, Φ is a constant curvature increment, EI is the cross-section
flexural stiffness.

3 Numerical formulation arrangement

A brief flowchart for the solution of the partial shear connection in steel-concrete composite beams is pre-
sented in Table 1. This strategy is applied to obtain the cross section bearing capacity and also to measure the
structural element stiffness with deformable connection.

Table 1. Numerical strategy to obtain the stiffness of element with partial shear connection

1. Consider f (γ), Mext, N = 0, section and material data as known
2. Analyse the cross section with full interaction to obtain ∆N tot

l

3. Calculate the axial force in concrete slab, Next,l (Equation 5)
4. Assemble the external forces vector (Equation 4)
5. Initialize: X = 0
6. for k←1, nmax do
7. Determine εl and εp (Equation 1)
8. Assemble fint (Equation 3)
9. Calculate F(X) (Equation 6)
10. if ||F|| ÷ ||fext|| ≤ Tol then
11. Stop the iterative process and go to line 20
12. end if
13. Assemble the tangent constitutive section matrix F’ (Equation 10)
14. Check the F’ singularity
15. if F’ is singular then
16. Extrapolated ultimate bearing capacity
17. Stop the process and go to 20
18. end if
19. Update the strain vector X (Equation 9)
20. end do
21. Calculate the axial end flexural stiffness (Equations 11 and 13)
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4 Numerical Application

One of tested composite beam sections presented in Chapman and Balakrishnan [9] is studied here, Fig. 4.
The material data, as well as constitutive relationship, limit stress and strains and Young’s modulus can be seen in
Lemes [1]. ChioreanBuru2017 highlighted the yield stress of the steel section plates are different. To adequate this
problem to the input of this research program, that made the analysis considering only fy for a section, the plastic
stress distribution in the steel cross section is made and the full yield bending moment is analytically calculated.
Thus, the equivalent yield stress is defined by the simple relation between the full yield bending moment and the
plastic section modulus. The residual stress model is applied considering the requirements of ECCS [10].

The results of the moment-curvature relation, moment-flexural stiffness and limit bending moments for vari-
ous funtions of degree of composite action are illustrated in the Figure 4.
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Figure 4. Composite beam analysis

It is possible to observe that the results obtained in the present work are similar to those presented by Chiorean
and Buru [5]. Of the curves presented, the reference does not present the result considering f (γ) = 0.4, however
this value is maintained because it is the minimum interaction degree prescribed in the Brazilian standard [11]. Of
the main differences between the proposed formulation and the Chiorean and Buru [5] result, we can highlight the
use of residual stresses, the stop criterion of the non-linear process and the approach of the yield stresses (used
here homogenously in the cross section).

It is interesting to highlight the drop in the bearing capacity and the flexural stiffness due to the reduction in
the degree of interaction between the steel and concrete elements. For the beam with full interaction, practically
twice the bearing capacity is compared to the section with null interaction. In Figure 4(c) highlights the variation
of the limit moments (Mpr - ultimate moment, Mer - yield moment, Mcr - cracking moment). Mer showed
practically linear variation due to the degree of composite action, and the behavior of the cracking moment was
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non-linear. This is due to the tensile stresses on the slab, which for full interaction are very small and as the degree
of interaction reduces, the independence of the slab deformation increases, generating greater tensile stresses and
the effect of cracking becomes more prevalent.

5 Conclusions

This paper presents a cross section nonlinear formulation for analysis of steel-concrete composite beam with
partial shear connection. The formulation starts from the strain compatibility method with the explicit introduction
of a degree of freedom for the simulation of the shear connection as deformable. Thus, three degrees of freedom
are defined in the section: slab axial strain, steel section axial strain and curvature.

An example of a composite beam section was simulated considering the performance of a sagging bending
moment. The results were consistent with those presented in the literature [5]. Some visible differences in the
results can be justified by the considerations between the present work and the reference. In this case, the residual
stresses, considered here, stand out; yield strength on the flange and web of the steel section; and the non-linear
process stop criterion.

It is possible to affirm that the presented formulation has satisfactory results and can be applied in complete
structural analyzes, either extracting the resistant bending moment or the axial and flexural stiffnesses.
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[7] Lemes, Í. J. M., Barros, R. C., Silveira, R. A. M., Silva, A. R. D., & Rocha, P. A. S., 2018. Numerical analysis
of rc plane structures: a concentrated nonlinear effect approach. Latin American Journal of Solids and Structures,
vol. 15, n. 2.
[8] Zubydan, A. H., 2013. Inelastic large defletion analysis of space steel frames including H-shaped cross-section
members. Engineering Structures, vol. 48, pp. 155–165.
[9] Chapman, J. C. & Balakrishnan, S., 1964. Experiments on composite beams. Structural engineers, vol. 42,
pp. 369–383.
[10] ECCS, 1983. Ultimate limit state calculation of sway frames with rigid joints. European Convention for
Constructional Steelwork, vol. Pub. no. 33.
[11] NBR 8800, 2008. Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifı́cios.
Associação Brasileira de Normas Técnicas.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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