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Abstract. The present work aims at the implementation and validation of a displacement-based two-dimensional
numerical formulation including several sources of non-linearities in steel-concrete composite frames, such as:
second order effects; plasticity; beam-to-column semi-rigid connections; and partial shear connection on beams.
The finite element method is used together with the co-rotational approach in order to allow large displacements
and rotations in the numerical model. The degradation of axial and flexural stiffness is determined exclusively at
the nodal points of the finite element mesh, characterizing the concentrated plasticity. In cross sections, the Strain
Compatibility Method (SCM) is used to capture the axial strains in the components of the section and also the
slip in the steel-concrete interface. Sliding is considered by introducing a degree of freedom at the steel-concrete
interface in the analysis of the cross section. In this way, the constitutive models of the materials and the shear
connection elements are described by continuous functions. The semi-rigid connections are simulated by means
of zero-length pseudo springs that are introduced at the finite elements ends, making them hybrid. To validate the
proposed numerical formulation, the results obtained are compared with numerical and experimental data available
in the literature. Since the model proposed here starts from the concentrated simulation of nonlinear effects, a study
of the finite element mesh refinement is also carried out.

Keywords: Second-order effects, Semi-rigid connections, Partial shear connection, Concentrated plasticity, Steel-
concrete composite frames

1 Introduction

In steel and steel-concrete composite structures analysis some factors, such as geometric imperfections, mate-
rial nonlinearity, semi-rigid connections and partial interaction in composite beams can contribute to the reduction
of the structural system bearing capacity.

The objective of the present work is to evaluate the non-linear behavior of steel-concrete composite elements
considering the non-linear effects concentrated in the nodal points. For this, the refined plastic hinge method will
be coupled to the strain compatibility method. Thus, the partial interaction will be simulated by introducing a local
degree of freedom in the cross sectional analysis. Semi-rigid connections, on the other hand, will be addressed by
introducing of zero-length pseudo-springs at the finite elements ends.

The numerical simulation of steel-concrete composite beams with partial shear connection considering non-
linear effects concentrated in nodal points is approached in a few papers [1–3]. In all these works, the numerical
simulation of the deformable connection is introduced in the numerical models similarly. The simulation is done
using the considerations of the AISC LRFD [4] for composite beams design. Basically, the composite section
moment of inertia is reduced by explicitly considering the degree of interaction provided by the shear connectors.
Additionally, the consideration of the partial interaction in a concentrated way coupled to beam-to-column con-
nections, in addition to the plasticity and geometric non-linearity, makes the present work comprehensive in the
evaluation of the overall stability of steel concrete structural systems.
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2 Finite element formulation

In the present work, the displacement-based formulation with concentrated plasticity in the nodal points is
applied. In this case, the axial and flexural stiffness degradation occurs exclusively at the FE nodes.

It is important to highlight some considerations involving the finite element formulation used in this paper:
• All elements are initially straight, prismatic and the cross-section remains plane after deformation;
• the effects of global instability that may occur in three-dimensional problems (e.g., lateral and torsional

buckling) are ignored considering a locking system out of plane;
• the effects of local instability are neglected, such effects as the buckling of the steel section plates, so the

section can reach its full plastic rotation capacity;
• large displacements and rigid body rotations are allowed;
• the shear strains effects are ignored;
• yielding of the cross-section is governed by only normal stress;
• there is full interaction between concrete slab and steel reinforcement bars;
• there is no vertical separation of the elements in the interface (uplift);
• the friction between steel and concrete is neglected; and
• the connections behavior is defined exclusively by the bending moment.

2.1 Kinematics relations

Figure 1 shows the kinematics of the element and the displacements (translations and rotations) notations
used below. If the structural element presents large displacements and/or large rotations, the global degrees of
freedom contain the rigid motion and the deformational part. The co-rotational approach aims to separate these
parts.
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Figure 1. Displacements in global system coordinates

Chhang et al. [5] described the rigid body motion is defined by the global displacements (translations uig
and vig , and rigid rotation α − α0). It defines a local coordinate system (x′, y′) that moves continuously with the
element. The local system is used to describe the deformational part of the motion.

The relation between global (uig, vig, θig, ujg, vjg, θjg) and local (δ, θi, θj) degrees of freedom is obtained
by a simple differentiation of the co-rotational displacements described in function of global displacements and
can be seen in [6]. In a matrix form, this relation is expressed by:

∆ul = B∆ug (1)

where ∆ul and ∆ug are the incremental displacements in local and global systems, respectively, and the transfor-
mation matrix B is responsible to transform the global displacements in local responses and vice-versa [6].
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2.2 Element formulation

The co-rotational approach is convenient for establishing the relationship between the local and global vari-
ables [7]. Starting from the Virtual Work Principle, it is possible to describe a relation between the forces in the
two referential systems. By an analytical development the global stiffness matrix is given by:

Kg =
∆fg
∆ug

= BTKlB +
zzT

L
N +

1

L2

(
rzT + zrT

)
(Mi +Mj) (2)

where Kl, N , Mi and Mj are the stiffness matrix and the forces in local system, respectively, and:

r = [−c − s 0 c s 0]
T (3)

z = [s − c 0 − s c 0]
T (4)

The stiffness matrix in the local system is obtained using consistent interpolation functions [8], eliminating
locking problems. In addition, it is deduced based on Green’s tensor and curvature via Euler-Bernoulli theory, as
can be seen in Lemes [6].

2.3 Concentrated plasticity approach

In the model of the structural systems using corotational-FE, the beam-column finite element is used, defined
by nodes i and j, as shown in Fig. 1. The inelastic flexure terms of the matrix Kl are obtained by a similar approach
proposed by Ziemian and McGuire [9]. In order to avoid any numerical integration in calculating element stiff-
ness matrices during the analysis, the flexure terms are calculated considering the moment-curvature relationship
(M × Φ) tangent varying linearly along the finite element length to the likely situation of a linear moment gradient
[9]. Thus:

EI (x) =
[(

1 − x

L

)
EIT,i +

x

L
EIT,j

]
(5)

whereEIt,i andEIt,j are the tangent flexural stiffness, obtained as described in Subsection 3.2, in the nodal points
i and j, respectively.

The reduced stiffness matrix (flexure terms), is defined using the second derivative of Hermite interpolation
functions [10], described in N, that is:

k∗ =

∫ L

0

NTEIT (x) Ndx (6)

in which:

NT =

[
2

L

(
2 − 3x

L

)
2

L

(
1 − 3x

L

)]
(7)

3 Cross sectional analysis

3.1 Cross sectional degrees of freedom

Two situations are considered here: a bare steel section; and a steel-concrete composite beam with a linear
degree of composite action. The analysis of bare steel section was presented in Lemes et al. [11]. In a steel-
concrete composite beam section with partial shear connection, the strain field is discontinuous in the steel-concrete
interface as showed in Figure 2. Thus, the linear equations that describes the cross sectional deformed shape, in
slab (εi,slab) and steel section (εi,steel) are expressed as a function of the axial strain in plastic centroid (PC) of the
slab, εc, and PC of the steel section, εs, respectively. That is:

εi,l = εc + Φ (yi − dslab)

εi,p = εs + Φ (yi − dsteel)
(8)

where dslab and dsteel are the distances of the section PC to slab PC and steel section PC, respectively.
In the matrix notation that follows, εc, εs and Φ are three degrees of freedom of the steel-concrete composite

beam section and are components of the strain vector X, described as:
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Figure 2. Descontinuous strain field

XT = [εc εs Φ] (9)

Exactly as done previously, the internal force vector for this case is expressed by the classical integration and
discretized sums representing the reinforcing bars in concrete slab. Thus:

fint =



Nint,slab =

∫
Al

σ [εl (εc,Φ)] dA+

nb∑
i=1

σi [εl (εc,Φ)]Abi

Nint,steel =

∫
Aa

σ [εp (εs,Φ)] dA

Mint =

∫
Al

σ [εl (εc,Φ)] ydA+

∫
Aa

σ [εp (εs,Φ)] ydA+

nb∑
i=1

σi [εl (εc,Φ)] yiAbi


(10)

with Ari being the ith reinforcing bar area and nb is the number of reinforcing bars. The materials constitutive
relationship can be seen in Lemes [6].

In the case of the structural element with partial shear connection, the external axial force is dismembered
being part acting on the slab, Next,slab, and another part acting on the steel section, Next,steel. The quantification
of the absorbed portions by each component of the cross section is valued considering the possibility of slipping at
the steel-concrete interface. Thus, the element external forces, including the total axial force (N ) and the external
bending moment (Mext), can be writing as:

fext =


Next,slab

Next,steel

Mext

 =


Next,slab

N −Next,slab

Mext

 (11)

The axial force absorbed by the concrete slab can be defined as a fraction of the portion that would be absorbed
if there were full interaction between steel and concrete, Nfull

slab [12]. The reduction factor is defined by f (γeff ).
So the axial force on the slab considering deformable shear connection is:

Next,slab = f (γeff )Nfull
slab (12)

the function of degree of composite action, f (γeff ), is keeping constant during the analysis. Thus, it is possible
to introduce de partial shear connection by a linear approach.

3.2 Moment-curvature relation and stiffness parameters

The cross sectional deformed shape is calculated by the equilibrium of the external, fext, and internal, fint,
forces that can be numerically expressed by the following nonlinear equation:
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Í. Lemes, T. Carvalho, L. Dias, R. Silveira, A. Silva

F(X) = fext − fint ∼= 0 (13)

with F and X being the equilibrium force vector and strain vector, respectively. All of this parameters are dependent
of the number of degrees of freedom of the section, as discussed in 3.1. Applying the expansion in Taylor series in
Equation 13, the equilibrium deformed shape is can be easily found by a nonlinear solution procedure. Here, the
Newton-Raphson method is used as follows:

Xk+1 = Xk −
[
∂F(X)

∂X

]−1

F(Xk) (14)

In the set of equations form, the nonlinear incremental force-strain relationship, can be defined as follows:


∆Nslab

∆Nsteel

∆M

 =


∂Nint,slab

∂εc

∂Nint,slab
∂εs

∂Nint,slab
∂Φ

∂Nint,steel
∂εc

∂Nint,steel
∂εs

∂Nint,steel
∂Φ

∂Mint

∂εc

∂Mint

∂εs

∂Mint

∂Φ




∆εc

∆εs

∆Φ

 (15)

In the steel-concrete composite beam section with partial shear connection, the axial stiffness is calculated by
the sum of the slab (EAslab) and steel section (EAsteel) axial stiffnesses, such as:

EAT = EAslab + EAsteel (16)

being:

EAslab =
∆Nslab

∆εc

∣∣∣∣
∆M=0

; EAsteel =
∆Nsteel

∆εs

∣∣∣∣
∆M=0

(17)

The effective flexural stiffness of the section, EIeff , is expressed as an explicitly dependent of the function
of the degree of composite action [6, 12]. Thus:

EIeff =
EInullT

1 − f (γeff )

(
EIfullT − EInullT

EIfullT

) (18)

4 Semi-rigid connection

In this finite element, zero-length rotational pseudo-springs are present in the nodal points. These springs are
responsible to simulate the connection nonlinear behavior via M × φc through their rotational stiffness parameter,
Sc.

δ, P

θci,Mci θcj ,Mcj

Pseudo-springs

Beam-column element
Sci Scj

Figure 3. Co-rotational hybrid beam-column finite element

For the element shown in Fig. 3, the force-displacement relationship is expressed by [13]:


∆P

∆Mci

∆Mcj

 =


k11 0 0

0 Sci −
S2
ci (Scj + k33)

β

Scik23Scj
β

0
Scjk32Sci

β
Scj −

S2
cj (Sci + k22)

β




∆δ

∆θci

∆θcj

 (19)
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with β = (Sci + k22) (scj + k33) − k23k32. ∆P , ∆Mci and ∆Mcj are the axial force and bending moments
increments; ∆δ, ∆θci and ∆θcj are the axial displacement and nodal rotations increments, respectively.

In this paper, the connections stiffness are evaluated by a multi-linear model as presented in Lemes [6].

5 Numerical application

The six storey steel frame showed in Fig. 4 was initially studied by Vogel [? ] considering both distributed
and concentrated plasticity analysis. The geometry, cross-sections, loads and the used finite element mesh are
represented in the same figure. All the loads are incremental. The structure has a global geometric imperfection
equal to 1/450. Here, concrete slabs are connected to the beams. These slabs have 12 cm of height and width of
110 cm.

The steel section has yield stress equal to 235 MPa and a modulus of elasticity taken as 205 GPa. The study
adopted an elastic-perfectly-plastic relationship without considering the material strain hardening. Concrete has
compressive strength of 3 kN/cm2. The beam-to-column connections are simulated by a constant stiffness as well
as the partial shear connection.
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Figure 4. Six-storey frame: geometry, loads and adopted FE mesh
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