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Abstract. Continuous restrained I-section beams may be subject to lateral-distortional buckling and web lateral 
buckling in regions of negative bending. Buckling analysis of restrained beams demands time-consuming Shell 
Finite Element Method (SFEM) models. SFEM is an important unquestionable tool to solve eigenvalue problems, 
however, it requires models involving several degrees of freedom and substantial engineering judgment. This fact 
explains why assessing the structural response of such structural systems constitutes a complex task. One very 
promising route that has been explored in the last decade is the use of Generalized Beam Theory (GBT) − a beam 
theory that incorporates genuine folded-plate concepts. In this context, a GBT-based analytical solution for the 
distortional buckling is proposed. First, the continuous elastic torsional restraint is incorporated in the cross-section 
distortional deformation mode. Next, a kinematic assumption comprising the null shear strain in each wall mid-
plane is imposed to determine the distortional displacement field. Finally, the buckling stress is derived from an 
energy method. The accuracy of the solution is validated by numerical solutions provided by the 2.0 release of the 
software GBTUL. 
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1  Introduction 

The distortional buckling may control the design of steel-concrete composite members in negative moment 
regions. The slab in-plane rigidity restraints the lateral displacement of the top flange while the lower flange 
performs a rigid-body motion. Bradford and Trahair [1] first addressed this instability phenomenon, were a Shell 
Finite Element Method (SFEM) was presented. Since then, several authors have studied this subject, and analytical 
[2-4] and numerical [5-8] solutions were presented.   

More recently, Ye and Chen [9] has shown that analytical solutions proposed by Svensson [2], Williams and 
Jemah [3] and Goltermann and Svensson [4] has poor accuracy when compared to numerical solution calculated 
by an SFEM software, with maximum error ranging from -12% to 60% for a beam under a negative uniform 
moment.   

Numerical solutions proposed by Johnson and Bradford [5], Bradford and Gao [6], Bradford and Ronagh [7], 
and Vrcelj and Bradford [8] require an SFEM algorithm implementation. Additionally, they often require models 
involving several degrees of freedom and substantial engineering judgment to characterize a buckling deformation 
mode. To overcome this problem, the authors developed an analytical solution for the distortional buckling of I-
beams based on the Generalized Beam Theory (GBT) where the displacement field is represented by two degrees 
of freedom. 

The critical buckling stress has been shown by Bradford [10] to asymptote to an upper bound as the rotational 
restraint increases while the lateral restraint has an insignificant impact on distortional buckling. Consequently, 
the assumption of an infinitely rigid rotational spring may result in a non-conservative design.    

This paper analyzes two distortional buckling modes: (i) orthogonal distortional buckling combining lateral 
(rigid body) displacement of the unrestrained flange and distortion of the web and (ii) non-orthogonal distortional 
buckling involving double curvature of the web. First, the continuous elastic torsional restraint is incorporated in 
the cross-section analysis following a process similar to the procedure presented by Bebiano et al. [11]. 
Thenceforth, null shear strain assumption is imposed to determine the distortional displacement and the Galerkin 
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method is applied to calculate the buckling stress. To evaluate the efficacy of the GBT-based solution, two 
illustrative examples are calculated by the 2.0 release of the GBTUL  (Bebiano et al. [12]), and the numerical 
results are compared with the analytical solution presented. 

2  Cross-Section Analysis 

The cross-section analysis is the first step in the GBT-based solution. The thin-walled section is discretized 
in distinct plates connected by natural nodes. The slab flexural and the axial stiffness are represented by 𝑘 and 𝑘௧ 
restraint coefficients, respectively, as illustrated in Fig. 1. According to Bradford [10], the effects of the minor axis 
elastic restraint on the distortional buckling are minimal, so the 𝑘 are assumed to be infinitely large.       

The warping elementary modes correspond to the imposition of a unit out-of-plane displacement at a natural 
node and null displacements at the others.  The cross-section is analyzed as a spatial truss model. The warping 
displacement 𝑢(𝑠) is approximated by a linear polynomial. The in-plane elementary modes correspond to the 
imposition of a unit in-plane displacement at a natural node (Fig. 2).  The cross-section is analyzed as a plane 
frame model and the in-plane displacements - 𝑣(𝑠) and 𝑤(𝑠) - are approximated by linear and cubic polynomials, 
respectively. 

The standard cross-section analysis procedure presented by Bebiano et al. [11] involves a total of 3 𝑛௧ (𝑛௧ – 
total number of nodes) elementary modes, corresponding to the imposition of 3 unit displacements at each node: 
two in-plane and one out-of-plane (warping) displacements. The present paper addresses only the elementary 
modes associated with the distortional buckling modes. In addition, these modes deviate from the standard 
procedure since some of these combine two elementary modes. 

Figure 1. (a) Cross-section geometry, (b) nodal discretization, local axes, and plate numbering, (c) slab restraint 
coefficients 

Figure 2. Elementary mode 1 (in-plane) 
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Mode 2 illustrated in Fig. 3 represents a local deformation mode while modes 1 and 3 compose a base space 
for the orthogonal deformation mode. The set composed by modes 1 and 3 should be divided in two sub-spaces: 
(i) one concerning null shear deformation and (ii) another concerning non-null shear deformation. These sub-
spaces are determined by the null (null shear) and non-null (non-null shear) eigenvalues of the generalized 
eigenvalue problem: 

(𝑫𝒎 − λ 𝑰)𝒂 = 𝟎 (1) 

where 𝑰 is an identity matrix and 𝑫𝒎 is a stiffness matrix defined by:  

𝐷
 = න 𝐺𝑡(𝑢,௦ + 𝑣)(𝑢,௦ + 𝑣)

𝜞

𝑑𝑠 (2) 

where the 𝑢,௦ is a short notation to express the derivative. The null solution of eq. (1) represents the orthogonal 
distortional mode and the non-orthogonal distortional mode is a linear combination of the first and the local 
deformation mode as illustrated in Fig. 4: 

After performing the cross-section analysis, it is possible to determine the displacement field related to the 
orthogonal distortional mode and the local mode. The displacement field associated to the orthogonal distortional 
mode in the matrix form is given by: 
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The displacement field associated to the local mode in the matrix form is given by: 

Figure 4. (a) Orthogonal distortional mode and (b) Non-orthogonal distortional mode 

Figure 3. Mode combination associated to (a) mode 2 and (b) mode 3 
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𝛼 and 𝛽 are the top and lower flanges mid-node rotation angles. 𝑎 and 𝑏  are coefficients depending on the flexural 
stiffness of the web plate. The mid-line functions follow the local axes convention and node numbering presented 
in Fig. 1. 

3  Buckling Analysis 

After determining the fundamental modes associated with distortional instability, it becomes possible to 
perform a buckling analysis. The cross-section displacement field is approximated by a linear combination of the 
orthogonal distortional mode and the local mode: 

𝑢(𝑥, 𝑠) = 𝑢(𝑠)𝜙,௫(𝑥) 

𝑣(𝑥, 𝑠) = 𝑣(𝑠)𝜙(𝑥) 

𝑤(𝑥, 𝑠) = 𝑤(𝑠)𝜙(𝑥) + 𝑤(𝑠)𝜙(𝑥) 

(5) 

where the subscript D and L indicate the distortional and local modes, respectively. 𝑢(𝑠), 𝑣(𝑠), and 𝑤(𝑠) are 
the mid-line functions defining the cross-section deformation mode 𝑘. 𝜙(𝑥) is the amplitude function describing 
the variation along the member length of mode 𝑘. 𝜙(𝑥) should be expressed in the following form: 

𝜙(𝑥) = 𝑎  𝜙ത(𝑥) 

𝜙(𝑥) = 𝑎 𝜙ത(𝑥)   
(6) 

where (i) 𝑎 and 𝑎 are amplitude coefficients of modes D and L (ii) 𝜙ത(𝑥) is a function describing, exactly or 
approximately, the variation along the longitudinal direction. For a simply supported beam subject to a uniform 
moment the exact function – which satisfies both natural and essential boundary conditions – is given by: 

𝜙ത(𝑥) = sin ቀ
𝑛 𝜋 𝑥

𝐿
ቁ  (7) 

where 𝑛 is the number of half-wavelengths. 

 The functions 𝑢(𝑥, 𝑠) and 𝑣(𝑥, 𝑠) depend exclusively on the distortional mode because the local mode is 
comprised only by in-plane displacement 𝑤(𝑠). The buckling behavior of a restrained beam is governed by the 
differential equation system relatively to modes D and L: 

𝑲 + 𝑹 + λ 𝑮 = 𝟎 (8) 

where 𝑲 is the first-order stiffness matrix, 𝑹 is the continuous restraint stiffness matrix and 𝑮 is the second-order 
(geometric) matrix given by: 

𝐾 = 𝐶𝜙,௫௫௫௫ − (𝐷 − 𝐸 − 𝐸)𝜙,௫௫ + 𝐵𝜙  

𝑅 = 𝑘𝛼
ଶ 𝜙  

𝐺 = 𝜙,௫௫
 𝑋𝜙,௫௫  

(9) 

where 𝐵, 𝐶 , 𝐷 𝑎𝑛𝑑 𝐸  are stiffness matrices given by: 



C. Andrade Jr., C. Basaglia 

CILAMCE 2020 
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC 

Foz do Iguaçu/PR, Brazil, November 16-19, 2020 
 

𝐶 = න 𝐸𝑡𝑢𝑢
𝜞

𝑑𝑠 + න
𝐸𝑡

12(1 − 𝜈ଶ)
 𝑤𝑤

𝜞

𝑑𝑠 

𝐵 = න
𝐸𝑡

1 − 𝜈ଶ
 𝑣,௦𝑣,௦

𝜞

𝑑𝑠 + න
𝐸𝑡ଷ

12(1 − 𝜈ଶ)
 𝑤,௦௦𝑤,௦௦

𝜞

𝑑𝑠 

𝐷 = න 𝐺𝑡൫𝑢,௦ + 𝑣൯൫𝑢,௦ + 𝑣൯
𝜞

𝑑𝑠 + න
𝐺𝑡ଷ

3
 𝑤,௦𝑤,௦

𝜞

𝑑𝑠 

𝐸 = න
𝜈𝐸𝑡

1 − 𝜈ଶ
 𝑢𝑣,௦

𝜞

𝑑𝑠 + න
𝜈𝐸𝑡ଷ

12(1 − 𝜈ଶ)
 𝑤𝑤,௦௦

𝜞

𝑑𝑠 

𝑋 = න 𝜎௫௫
 𝑡(𝑣𝑣 + 𝑤𝑤)

𝜞

𝑑𝑠 

(10) 

where  (i) 𝛤 stands for the mid-line domain, (ii) 𝜎௫௫
 (𝑠) and 𝜙

(𝑥) are the pre-buckling normal stress function and 
modal amplitude functions, respectively, (iii)  𝐸 is the Young modulus and 𝜈 is the Poisson ratio. They can be 
determined by a first-order (pre-buckling) analysis, as defined in Bebiano et al. [12]. Equation (8) should be solved 
by the Galerkin method, which results: 

ห𝑲෩ + 𝑹෩ − λ𝑮෩ห = 0 (11) 
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The characteristic polynomial roots are:  

λ =
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ଶ − 4𝜂ଵ𝜂ଷ

2𝜂ଵ

 (13) 

where  
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(14) 

4  Illustrative Examples 

In order to illustrate and validate the analytical solution proposed, two cross-section geometries were chosen 
the (i) orthogonal and (ii) non-orthogonal distortional buckling modes: 

(i) Section 1: ℎ = 200 𝑚𝑚, 𝑏 = 100 𝑚𝑚, 𝑡௪ = 1 𝑚𝑚, 𝑡 = 2 𝑚𝑚, 𝑘 = 10000 𝑁; 

(ii) Section 2: ℎ = 200 𝑚𝑚, 𝑏 = 100 𝑚𝑚, 𝑡௪ = 1 𝑚𝑚, 𝑡 = 10 𝑚𝑚, 𝑘 = 100000 𝑁. 

Section 1 has the same cross-section characteristics adopted by Silvestre [13].  A Young’s modulus of 210 
GPa and a Poisson ratio of 0.3 were assumed.  

The critical stress variation as a function of the rotational stiffness 𝑘 is plotted in Fig. 5 for a beam length of 
4662 mm. It corresponds to the critical length related to the orthogonal distortional mode considering a full rotation 
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restraint at the top flange.  The critical stress asymptotes the value calculated by Silvestre [13], which considers a 
full rotational restraint. This author also suggested that I-sections with a very thick flange exhibit a buckling mode 
comprising double curvature of the web (non-orthogonal distortional). This hypothesis was confirmed by the 
analytical and numerical results in Fig. 5. 

The critical stress variation with the beam length for Section 1 (a) and Section 2 (b) are plotted in Fig. 6. It 
is seen that analytical and numerical solutions are in close agreement. Section 1 exhibits a local mode instability 
at the beam length interval of 5600 < 𝐿 < 7600 𝑚𝑚, corresponding to the transition between one and two half-
wavelengths. This phenomenon does not affect Section 2 distortional mode.   

 

Figure 6 - Critical stress variation with the beam length for (a) Section 1 and (b) Section 2 

5  Conclusions 

The present paper presented a GBT-based analytical solution for the distortional buckling of composite steel-
concrete beams. Two instability modes were covered: (i) lateral distortional buckling for I-sections with thin 
flanges, and (ii) web lateral buckling for cross-sections with thick flanges. The GBT enabled the derivation of an 
accurate closed-form solution determined by a linear combination of only two degrees of freedom, while an SFEM 
solution would require an extensive computational cost. The illustrative examples provided demonstrated that the 
distortional critical stress asymptotes to a maximum as the rotational coefficient increases, confirming previous 
studies. This fact explains why the consideration of an infinitely rigid rotational spring may lead to a non-
conservative design. Numerical and analytical results also demonstrated that a local buckling mode might control 
the design of I-sections with thin flanges.  

Figure 5. Critical stress variation with the rotational stiffness 
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