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Abstract. Structural multi-objective optimization problems are common in the Engineering field’s real-world
problems where one or more objective functions, in general conflicting, may be considered to be optimized, leading
to complex optimization problems. Two objective functions problems represent the great majority of formulations
in this context where Pareto fronts can be easily represented and provided to the Decision Maker (DM). For
instance, in the trusses’ structural optimization, these conflicting objective functions may be the weight and the
maximum nodal displacements to be minimized. This paper presents the formulation of multi-objective truss
structural optimization problems considering three objective functions, such as the weight, the maximum nodal
displacement, and the first natural frequency of vibration. The constraints refer to the allowable axial stresses
in the bars. Several experiments inspired in the benchmark mono-objective optimization are analyzed in this
paper, presenting their Pareto surfaces showing the non-dominated solutions. The structural optimization problems
consider sizing and shape design variables simultaneously, and they can be continuous, discrete, or mixed. The
search algorithm adopted to solve these problems is a modified version of the Differential Evolution called Third
Evolution Step Differential Evolution (GDE3). One of the most important steps, after obtaining the Pareto surfaces,
is the definition of which solution or solutions will be chosen by the decision-maker (DM), a non-trivial task. A
Multi-Tournament Decision method, commonly used in bi-objective optimization, is adapted in this paper to extract
the solutions from the Pareto surfaces based on DM preferences.

Keywords: Multi-objective optimization, Truss structural optimization, Differential Evolution, Multi-Tournament
Decision method.

1 Introduction

Structural optimization in Engineering is a powerful tool that can lead to the economy in real-world designs.
Usually, a single objective is employed on its process where the goal is to minimize or maximize any desired objec-
tive function, such as cost, weight, subject to displacement, stress, natural frequencies of vibrations as constraints,
and so on. At the end of this process, one single optimized solution is presented, and it’s taken as a final product
to be made.

As a similar process, multi-objective optimization can handle two or more objectives to be reached. However,
in the end, the Decision-Maker (DM) has a set of non-dominated solutions (usually called Pareto) and need to take
the final decision choosing one among them. Another feature of multi-objective is obtaining “great” improvements
in one objective function when having “small” losses on another one depending on the aspect of Pareto (i.e.,
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“small” weight increase leading to “high” displacements decrease).
Classical approaches treats multi-objective optimization problems as multiple mono-objective optimization

problems (Reyes-Sierra and Coello [1],Coello et al. [2]). On the other hand, more recent approaches modify
original algorithms to handle the multi-objective problems: Mokarram and Banan [3] proposed a new version of
the Particle Swarm Optimization (PSO) for multi-objective optimization called the FC-MOPSO. The algorithm can
handle continuous and discrete variables by extending the usual PSO formulation for multi-objective optimization;
several benchmark functions and some benchmark trusses are analyzed. Pareto surfaces are provided for the case
of 3 objective-functions, which is similar to the work proposed here. Kaveh and Mahdavi [4] presents a new multi-
objective algorithm called MOCBO based on energy released by colliding bodies. Again, several benchmark
functions are first tested, and then two multi-objective optimizations of trusses are analyzed. Tejani et al. [5]
also proposes a new algorithm based on heat transfer called MOHTS to handle the multi-objective optimization
problems; again, some benchmark of double objective-functions optimization of trusses are analyzed to validate the
new algorithm. Similar works where an adaption of pre-existing algorithms is adopted to handle the multi-objective
optimization applied to truss optimization problems can be found in Moradi et al. [6], Kaveh and Laknejadi [7].
Since most works in the literature present just two objective functions, this paper presents an example of tri-
objective truss structural optimization showing an amplified set of non-dominated solutions by a Pareto surface.

The remainder of this paper is organized as follows: Section 2 describes the formulation of the multi-objective
structural optimization problem discussed in this paper. Section 3 summarizes the basic steps of a strategy to extract
desired solutions, based on designer‘s preferences, from the Pareto surface. The methodology and computational
experiment discussed in this paper are provided in Section 4 followed by the analysis of results presented in Section
5. Finally, the conclusions and future works are reported in Section 6.

2 Multi-objective structural optimization

The tri-objective structural optimization problem can be defined as follows:

min /max of1 and min /max of2 and min /max of3

s.t. constraints
(1)

where of1, of2, and of3 are the three conflicting objective functions. In this work, four structure’s properties
are considered and combined between objective functions and or constraints: the weight, the natural frequency of
vibration, the elastic critical load factor, and the nodal displacements. Three multi-objective structural optimization
(MOSO), further defined in subsection 4.1, will describe which one is set as an objective function and which one is
set as a constraint. Stresses on bars are always treated as constraints since the global stability is verified, checking
the elastic critical load factor.

Defining x as the sizing design variables concerning the cross-sectional areas, the following items are defined:
• The weight of structure is obtained by the sum:

W (x) =
N∑
i=1

ρAiLi (2)

where ρ is the specific mass of the material, Ai and Li are the cross-sectional areas and the length of the i-th
bar of the structure, respectively. The number of bars of the structure is denoted by N .

• The nodal displacements {δ} are obtained by the equilibrium equation for a discrete system of bars, which
is written as:

[K] {δ} = {F} (3)

where [K] is the elastic stiffness matrix of structure and {F} is the nodal force vector.
• The natural frequencies of vibration are obtained by evaluating the eigenvalues of matrix(

[K]− f2mf [M ]
)
φmf = 0 (4)

where [M ] is the mass matrix and φmf is the mf -th eigenvector corresponding to the mf -th eigenvalue
(Bathe [8]).

• The load factors λ concerning the global stability are obtained by the evaluation of eigenvalues of matrix

([K] + λmλ [KG]) νmλ = 0 (5)
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where [KG] is the geometric matrix of structure and λmλare the equivalent eigenvalues with respect to the
mλ load factors of the structure. The lowest value λcr of λmλ gives the buckling load factor or critical
load factor. The eigenvector νmλ represents the corresponding instability modes for the load factors λmλ
(McGuire et al. [9]).

3 Multicriteria decision making

Once the optimization process is carried out, the DM might want to choose a solution between those one pre-
sented in the Pareto front according to its preferences. There are several strategies for this task, and the extraction
scheme used in this work is detailed on Parreiras and Vasconcelos [10] and Angelo et al. [11]. Briefly, the DM
must set weights (in the meaning of importances) for objective functions according to its desire, and the sum of
them should be equal to 1 (representing 100%). For instance, since in this work there are 3 objective functions to
be analyzed, one example of weights could be w1 = 0.7, w2 = 0.2 and w3 = 0.1 (representing 70%, 20% and 10%
of importance for each objective function). Once the weights are set, the mathematical formulation presented in
the works cited above provides a final solution given to the DM (See the scheme details therein these references).

4 Methodology and computational experiment

In this section, a benchmark example is presented to assess the proposed methodology. The search algorithm
is the Third Evolution Step of Generalized Differential Evolution (GDE3) proposed by Kukkonen and Lampinen
[12], which is a modified version of traditional Differential Evolution (DE) proposed by Storn and Price [13, 14].
The multi-objective optimization is based on ranking by crowding distance (Raquel and Naval Jr [15]) and coupled
to the Adaptive Penalty Method (APM), proposed by Barbosa and Lemonge [16], to handle the mechanical con-
straints. The optimization process was done in 20 independent runs throughout 200 generations with 50 candidate
vectors. Only non-dominated solutions (Pareto front) are shown as the final results.

4.1 10 bar truss

This is one of the most popular benchmark examples of structural optimization corresponding to the 10-bar
truss shown in Figure 1. The design variables are the cross-sectional areas of bars, which lower and upper bounds
are respectively 6.45x10−4 m2 and 258.06x10−4 m2. This truss has Young’s modulus equal to E = 68.95GPa, and
specific mass equals 2700 kg/m3. A nonstructural mass of 454 kg is added at each free node (not considered in the
final weight of the optimized trusses).

9.144 m 9.144 m
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Figure 1. The 10-bar truss.

The MOSO studied in this work is defined as to minimize weight and the maximum displacement and to max-
imize the first natural frequency of vibration, setting the stresses and the elastic critical load factor as constraints.
Table 1 shows the limits for each constraint:

5 Analysis of result

The obtained results showed interesting 3d curves as the Pareto front. For the studied MOSO (Figure 2), one
can observe the decrease of maximum displacement with an increase in the structure’s weight, which was expected.
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Constraint Value

σmax ≤ 1.72 x 108 N/m2

λcr ≥ 1

Table 1. Limits for each constraint.

Figure 2. Pareto front of the 10 bar truss.

Figure 3. Solution extraction via MTD - w1 = 0.2, w2 = 0.7 and w3 = 0.1.
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Figure 4. Solution extraction via MTD - w1 = w2 = w3 = 1/3.

Figure 5. Solution extraction via MTD - w1 = 0.7, w2 = 0.2 and w3 = 0.1.
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On the other hand, one can observe a stretch where the first natural frequency of vibration increases, whereas the
structure’s weight decreases and a stretch where the first natural frequency decreases with the structure’s weight
increase, which is not intuitive. This same remark can be seen on the bottom right graph of the same figure, but
this time for maximum displacement versus the first natural frequency.

The solution extraction via MTD showed also intuitive results: when changing the DM preferences, the
position of the selected solution changed on an expected way in the three objective function space. One can
observe similar the first natural frequency of vibration but different weight and maximum displacement (around
14 Hz) for both chosen structures when w=[0.2 0.7 0.1] and w=[1/3 1/3 1/3] (Figures 3 and 4). The third
objective weight defines a plane on another two-objective space where few solutions might exist, possibly leading
to an unfair and inaccurate extraction.

6 Conclusions and future works

It can be concluded that the proposed methodology worked for this kind of problem, although there’s still
no comparison in literature. The Pareto fronts in most of the cases are intuitive and seemed to have a smooth
geometry (i.e., no spikes). The extraction method also seemed to work and showed intuitive results when changing
the weights (importance).

As future works, new metrics to evaluate the performance of this methodology will be used, and comparison
with other experiments found in the literature is going to be carried out. Also, an improvement in MTD extraction
for three objective function surfaces will be studied, and large-scale multi-objective structural optimization will be
investigated.
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