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Abstract. Recently there has been a growing interest in evolutionary multi-objective optimization algorithms
due to its applicability in problems from several fields, especially those of applied engineering and mathematics.
In this context, there are many of algorithms applied to these types of problems, such as differential evolution,
genetic algorithms, particle swarm, among others. This paper deals with a multi-objetive sizing, discrete or con-
tinuous, strucutural optimization problem with respect to: i) the minimization of the mass of truss structures; ii)
the maximization of the first natural frequency of vibration and iii) the minimization of the maximum displace-
ment, considering stress constraints. A multi-objective particle swarm algorithm called Multi-objective Craziness
based Particle Swarm Optimization (MOCRPSO) is the search algorithm adopted here and an Adaptive Penal-
ization Method (APM), which has been successfully applied to solving mono-objective optimization problems, is
used to handle the constraints. Some computational experiments are analyzed, presenting very interesting results
providing pareto fronts between the objectives.

Keywords: Multi-objective Truss Optimization, Particle Swarm Optimization, Multiple natural frequencies of
vibration

1 Introduction

Commonly in structural design of trusses, for example, designers are interested in finding the minimal weight
of the structure subject to displacements, axial stresses, critical load factors, and so on. Besides these constraints,
optimizing a truss structure can be formulated considering multiple and conflicting objective functions, for in-
stance, to minimize the weight of the structure and its maximum nodal displacement. Also, it is common to search
for light and economic structures that meet safety criteria, which leads to constraints such as minimum values for
natural frequencies of vibration. For most applications staying away from excitations frequencies may be much
more important.

Evolutionary Algorithms (EAs), especially the population-based metaheuristics, have become attractive ap-
proaches used to solve multi-objective optimization problems in several areas. Many metaheuristics have been
developed by researchers and the most popular ones are GA, PSO, HS, ACO, and so on [1]. In the field of struc-
tural optimization, many successful applications of these algorithms have been reported in literature [2–4].

Particle Swarm Optimization (PSO) is a popular metaheuristic introduced by Eberhart & Kennedy [5] which
provides computational models based on the concept of collective intelligence. A modified version of the algo-
rithm called Craziness based Particle Swarm Optimization (CRPSO), proposed by Kar et al. [6], is used in this
paper as the search engine. The multi-objective version of the CRPSO, called Multi-objective Craziness Particle
Swarm Optimization (MOCRPSO), incorporates a crowding distance mechanism, non-dominated solutions, and
an external archive, together with a mutation operator based on the MOPSO-CD developed by Raquel & Naval
[7].
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



A tri-objective truss design optimization using a MOCRPSO

In this paper, a tri-objective structural optimization problem is formulated considering conflicting objectives:
i) the minimization of the mass of truss structures; ii) the maximization of the first natural frequency of vibration,
and iii) the minimization of the maximum displacement. The axial stresses are the constraints. A Pareto front
composed by the non-dominated solutions is searched as the expected solution. The constrained optimization
problem is replaced by an unconstrained problem by introducing an Adaptive Penalty Method (APM) proposed
by Lemonge & Barbosa [8]. A 10-bar truss using continuous and discrete design variables is analyzed in the
computational experiments.

The remainder of the paper is organized as follows. Section 2 describes the formulation of the multi-objective
structural optimization problem. Section 3 presents the constraint-handling technique and the MOCRPSO algo-
rithm. The computational experiments are presented in Section 4. Finally, the paper ends with conclusions in
Section 5.

2 Multi-objective optimization

In engineering, most decision problems are Multi-objective Optimization Problems (MOP) [9]. A MOP
has some objective functions that are to be minimized (or maximized) simultaneously. Although single-objective
structural optimization problems are commonly found in the literature; the formulation of optimization problems
involving multiple objectives appears naturally due to the presence of two or more conflicting objectives.

The structural multi-objective problem discussed in this paper is formulated as:

min W (x) and max ω1(x) and min maximum(uj(x)), j = 1, ..., ndof ,

subject to σi(x) ≤ σ

xL ≤ x ≤ xU ,

(1)

where W (x) is the weight of the structure, ω1(x) is the first natural frequency of vibration, uj(x) is the displace-
ment at the j-th node, ndof is the number of degree of freedom, and σi(x) is the axial stress at the i-th bar. The
design variables are x = {A1, A2, ..., AN}, where Ai are the sizing design variables indicating the cross-sectional
areas of the N bars (continuous or discrete) that must be in the lower xL and upper xU bounds. W (x) is written as:

W (x) =

N∑
i=1

ρAiLi, (2)

where ρ is the specific mass of the material and Li is the length of the i-th bar of the structure. ω1(x) is obtained
by the evaluation of the eigenvalues of the matrix[

(ω2
mf
× [M ]) + [K]

]
= 0, (3)

where [M ] is the mass matrix and ωmf
are the equivalent eigenvalues with respect to the mf natural frequencies

of vibration of the structure [10]. The nodal displacements {u} are obtained by the equilibrium equation for a
discrete system of bars, which is written as:

[K] {uj(x)} = {p} , (4)

where {p} are the load components.

3 Methods

3.1 Constraint-Handling technique

The constrained structural optimization problem is replaced by an unconstrained optimization problem adding
a penalty function. An analysis of relevant types of constraint-handling techniques that have been adopted with
nature-inspired algorithms is presented in Mezura-Montes & Coello [11] and Barbosa et al.. [12].

An Adaptive Penalty Method (APM) has been proposed by Barbosa & Lemonge [8] to handle constraints.
This method is adopted in this study to handle all the constraints of the test-function in the numerical experiments.
Considering each objective separately, the fitness function F (x) can be written as

F (x) =

 f(x), if x is feasible

f̄(x) +
∑nc

j=1 kjvj(x), otherwise
(5)
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and

f̄(x) =

 f(x), if f(x) > 〈f(x)〉

〈f(x)〉 , if f(x) ≤ 〈f(x)〉 ,
(6)

where 〈f(x)〉 is the average value of the objective function of the current population and nc is the number of
constraints. The penalty parameter kj is defined as

kj = | 〈f(x)〉 | 〈vj(x)〉∑nc

l=1[〈vl(x)〉]2
, (7)

where 〈vj(x)〉 means the violation of the j-th constraint averaged over the current population considering only
unfeasible individuals.

3.2 Multi-objective algorithm

Swarming behavior is a collective behavior found in birds, fish, bees, and other types of insects. Life in
society offers more chances of survival as it facilitates hunting and gathering food, reduces the possibility of attack
by predators, among others [13]. Particle Swarm Optimization (PSO) is a population algorithm, introduced by
Eberhart & Kennedy [5], inspired by the social behavior of birds flocking in search of food and widely used in the
literature. PSO has been successfully applied to different types of structural optimization problems [14, 15].

A modified version of the standard PSO called Craziness-based Particle Swarm Optimization (CRPSO) and
proposed by Kar et al. [6] is used in this paper. The velocity expression vi and the position xi is written as follows
[6]:

v
(i)
j (t+ 1) = r2 · sign(r3) · v(i)j (t) + (1− r2)c1 · r1(x

(i)
pbest − x

(i)
j ) + (1− r2) · c2 ·

(1− r1)(xgbest − x(i)j ) + P (r4) · sign2(r4) · vcrazinessj

(8)

x
(i)
j (t+ 1) = x

(i)
j (t) + v

(i)
j (t+ 1) (9)

where r1, r2, r3 and r4 are the random parameters uniformly taken from the interval [0,1), sign(r3) is a function
defined as

sign(r3) =

 −1, r3 ≤ 0.5

1, r3 > 0.5,
(10)

vcrazinessj , the craziness velocity, is a user defined parameter from the interval [vmin, vmax] and P (r4), sign2(r4)
are defined, respectively, as

P (r4) =

 1, r4 ≤ Pcr

0, r4 > Pcr,
(11)

sign2(r4) =

 −1, r4 ≥ 0.5

1, r4 < 0.5,
(12)

and Pcr is a predefined probability of craziness. Although the parameter Pcr is fixed, P (r4) is defined every time
the velocity is calculated.

The multi-objective version of CRPSO algorithm entitled Multi-objective Craziness based Particle Swarm
Optimization (MOCRPSO) is based on the MOPSO-CD1 algorithm proposed by Raquel & Naval [7]. The new
velocity of the MOCRPSO is written as

v
(i)
j (t+ 1) = r2 · sign(r3) · v(i)j (t) + (1− r2)c1 · r1(x

(i)
pbest − x

(i)
j ) + (1− r2) · c2 ·

(1− r1)(A[gbest]− x(i)j ) + P (r4) · sign2(r4) · vcrazinessj .
(13)

The algorithm uses the concept of an external archiveARQ to store the non-dominated solutions. Also, some
mechanisms are incorporated in MOCRPSO to maintain the diversity of non-dominated solutions [7]: mutation,
crowding distance, and global best selection. An operator of a mutation is used to increase diversity in the swarm.
It helps prevent premature convergence due to existing local Pareto fronts in some optimization problems. The

1https://sites.google.com/site/prosnaval/codes
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crowding distance is incorporated into the algorithm, specifically on the global best selection and in the external
archive. The global best of the particles is selected from those non-dominated solutions with the highest crowding
distance values. Whenever the archive is full, crowding distance is again used to select the solution that should be
replaced in the external archive. More details can be found in [7, 16].

4 Computational experiments

The computational experiment refers to a well-known structural optimization problem, named as a 10-bar
truss considering continuous and discrete variables. The first objective is to minimize the weight of the structure,
the second is to maximize the first natural frequency of vibration, and the third is to minimize the maximum
displacement, considering axial stresses as constraints.

The following section presents a description of the problem presented above. For this test-problem, the initial
population was randomly generated considering the maximum number of objective function evaluations is 50000
(50 particles and 1000 generations), the number of independent runs is 100, and all of the presented solutions are
rigorously feasible. The parameters of the MOCRPSO are: c1 = c2 = 2.05, vcraziness = 0.001, Pcr = 0.5,
global neighborhood topology. The external file limit ARQ = 500. The code was developed using C language
and the structure was analyzed by the Finite Element Method (FEM) [17] during the evolutionary process.

4.1 The 10-bar truss

The 10-bar truss [18], illustrated in Fig. 1, has ρ = 0.1 lb/in3 and E = 104 ksi. Vertical downward loads of 100
kips are applied at nodes 2 and 4, and the stress in each bar is limited to ± 25 ksi. A non-structural mass of 1000
lb is attached to the free nodes. For the continuous case, the lower and upper bounds for the cross-sectional areas
are defined by [0.1; 40] (in2). For the discrete case, the values of the cross-sectional areas are chosen from the set
(in2): {1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18,
4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 19.90,
22.00, 22.90, 26.50, 30.00, 33.50}, resulting in 42 options.
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Figure 1. 10-bar truss, taken from [19].

4.2 Results and discussions

Figure 2(a) and (b) presents the Pareto front of the 10-bar truss continuous and discrete case. No comparison
is made, since to the best of our knowledge, no results are found in the literature comparable with those obtained
in this study.

However, an analysis takes into account all the information obtained by the Pareto fronts was performed.
The Decision Maker (DM) has a nontrivial task of extracting a solution from the Pareto set. Based on that,
a tournament-based method that ranks the best and the worst possible solutions in the Pareto set according to
objectives and preferences (weights) established by the DM was proposed by Parreiras & Vasconcelos [20] and
named as Multicreiteria Tournament Decision (MTD) Method. More details and pseudocode for the MTD can be
found in [20].

This method is used in this study to find the best solutions, according to some importances. Four decision
scenarios are used considering three criteria: (i) the weight, (ii) the first natural frequency, and (iii) the maximum
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(a) Continuous case (b) Discrete case

Figure 2. Pareto front of the MOCRPSO for the 10-bar truss.

displacement. The scenarios are described as follows:
• Scenario A: all criteria have the same importance, i.e. (w1, w2, w3) = (0.3333, 0.3333, 0.3333).
• Scenario B: criterion (i) is the most important and criteria (ii) and (iii) have the same importance, i.e. (w1,
w2, w3) = (0.6, 0.2, 0.2).

• Scenario C: criterion (ii) is the most important and criteria (i) and (iii) have the same importance, i.e. (w1,
w2, w3) = (0.2, 0.6, 0.2).

• Scenario D: criterion (iii) is the most important and criteria (i) and (ii) have the same importance, i.e. (w1,
w2, w3) = (0.2, 0.2, 0.6).

Figure 3(a) and (b) show the non-dominated solutions for the 10-bar truss continuous and discrete cases,
respectively. The large circle in this figure represents the solutions extracted by the MTD method corresponding
to each scenario. It is possible to observe the effect of the importance of w in the MTD results. In Fig. 3(a), with
w3 = 0.6, in scenario D, it leads to the lowest value for the displacement and, on the other hand, the highest values
for the weight and the first frequency. In scenarios A, B, and C, the three values found for the objective functions
are almost identical.

For the discrete case, in Fig. 3(b), with the importance w1 = 0.6 for scenario B, and w2 = 0.6 for scenario
C, all the objective functions values are the same. When w3 = 0.6, in scenario D, it leads to the lowest value for
the displacement and the highest values for the weight and the first frequency, as also occurred in the continuous
case. Moreover, when all criteria have the same importance, in scenario A, the three objective functions have
intermediate values compared to the other scenarios. Finally, the values of the three objective functions and their
respective design variables are presented in Table 1.

(a) Continuous case (b) Discrete case

Figure 3. MTD solutions according to four different scenarios for the 10-bar truss.
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Table 1. Design variables (dv) and objective function values of the MTD solutions (Scenarios (Sc.) A, B, C, and
D) of the 10-bar truss. W (x) in lb, ω1(x) in Hz, and u(x) in inches.

Continuous case Discrete case

dv Sc. A Sc. B Sc. C Sc. D Sc. A Sc. B Sc. C Sc. D

A1 40.00 40.00 40.00 40.00 14.2 11.50 11.50 14.20

A2 0.10 0.10 0.10 30.54 1.62 1.62 1.62 4.18

A3 40.00 40.00 40.00 40.00 11.5 7.97 5.74 14.20

A4 40.00 40.00 40.00 40.00 7.97 4.59 4.97 14.20

A5 0.10 0.10 0.10 0.10 1.62 1.62 1.80 1.62

A6 0.10 0.10 0.10 36.43 1.62 2.38 1.62 7.22

A7 23.97 23.97 24.52 40.00 4.59 4.49 4.59 14.20

A8 40.00 40.00 39.93 40.00 7.22 5.12 4.80 14.20

A9 40.00 40.00 40.00 40.00 14.2 7.22 11.50 14.20

A10 5.18 5.18 8.14 40.00 1.62 1.8 1.62 4.80

W (x) 9888.0253 9888.0253 10063.8185 14880.8092 6220.0026 4368.3981 4568.3662 10341.3724

ω1(x) 4.9340 4.9340 4.8239 13.1817 12.2542 11.5010 11.2640 13.4602

u(x) 1.1390 1.1390 1.1393 0.981464 1.8373 2.5864 2.5453 1.2501

5 Conclusions

In the present study, a multi-objective algorithm entitled MOCRPSO has been used to solve structural engi-
neering design problems considering three conflicting objectives. An adaptive penalty method was used to handle
the constraints of the constrained optimization problem. The algorithm’s performance was evaluated using a 10-bar
truss take into account continuous and discrete search spaces.

No studies were found in the literature, since to the best of our knowledge, comparable with those conducted
in this study. Hence, an analysis was conducted to evaluate the Pareto set using an MTD method to allow the DM
to indicate his/her preferences simulating different criteria. Additionally, the values of the objective functions and
their respective design variables obtained by the MTD were presented, indicating the best solutions according to
some criteria.

For future works, the proposed algorithm will be applied for solving other test-problems considering large-
scale optimization problems.

Acknowledgements. The authors wish to thank the reviewers that helped the quality of the paper, CNPq (306186/2017-
9), and CAPES (finance code 001) for their support.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

References

[1] Gholizadeh, S., Asadi, H., & Baghchevan, A., 2014. Optimal design of truss structures by improved multi-
objective firefly and bat algorithms. Iran University of Science & Technology, vol. 4, n. 3, pp. 415–431.
[2] Lemonge, A., Hallak, P., Fonseca, L., & Barbosa, H., 2014. A genetic algorithm for optimization of spatial
trusses considering self-weight loads. Engineering Optimization 2014, pp. 175.
[3] Kaveh, A. & Talatahari, S., 2009. Hybrid algorithm of harmony search, particle swarm and ant colony for
structural design optimization. In Harmony Search Algorithms for Structural Design Optimization, pp. 159–198.
Springer.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Natal/RN, Brazil, November 16-19, 2020



E.C.R. Carvalho, A.C.C. Lemonge, S.C.A. Bası́lio, P.H. Hallak

[4] Majumdar, A., Maiti, D. K., & Maity, D., 2012. Damage assessment of truss structures from changes in
natural frequencies using ant colony optimization. Applied Mathematics and Computation, vol. 218, n. 19, pp.
9759–9772.
[5] Eberhart, R. & Kennedy, J., 1995. A new optimizer using particle swarm theory. In Micro Machine and Human
Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on, pp. 39–43. IEEE.
[6] Kar, R., Mandal, D., Mondal, S., & Ghoshal, S. P., 2012. Craziness based particle swarm optimization algo-
rithm for fir band stop filter design. Swarm and Evolutionary Computation.
[7] Raquel, C. R. & Naval Jr, P. C., 2005. An effective use of crowding distance in multiobjective particle swarm
optimization. In Proceedings of the 7th annual conference on Genetic and evolutionary computation, pp. 257–264.
ACM.
[8] Barbosa, H. J. C. & Lemonge, A. C. C., 2002. An adaptive penalty scheme in genetic algorithms for con-
strained optimization problems. In GECCO, volume 2, pp. 287–294.
[9] Oliveira, L. S. d. & Saramago, S. F., 2010. Multiobjective optimization techniques applied to engineering
problems. Journal of the brazilian society of mechanical sciences and engineering, vol. 32, n. 1, pp. 94–105.
[10] Bathe, K.-J., 2006. Finite element procedures. Prentice Hall, Pearson Education, Inc.
[11] Mezura-Montes, E. & Coello, C. A. C., 2011. Constraint-handling in nature-inspired numerical optimization:
past, present and future. Swarm and Evolutionary Computation, vol. 1, n. 4, pp. 173–194.
[12] Barbosa, H. J., Lemonge, A. C., & Bernardino, H. S., 2015. A critical review of adaptive penalty techniques
in evolutionary computation. In Evolutionary constrained optimization, pp. 1–27. Springer.
[13] Zhu, Y.-f. & Tang, X.-m., 2010. Overview of swarm intelligence. In 2010 International Conference on
Computer Application and System Modeling (ICCASM 2010), volume 9, pp. V9–400. IEEE.
[14] Jansen, P. W. & Perez, R. E., 2011. Constrained structural design optimization via a parallel augmented
lagrangian particle swarm optimization approach. Computers & Structures, vol. 89, n. 13-14, pp. 1352–1366.
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