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Abstract. Genetic Algorithms (GA) are global optimization, based on natural selections and genetic mechanisms 

for which structured and random search strategies are geared by reinforcing the search for high amplitude points 

in which the function to be minimized (maximized) has relatively low (high) values. This work deals with a study 

on the Genetic Algorithm application to estimate parameters inherent to S-N-p Curves generated for typically 

structural details of the metal railway bridges applying together with The Maximum Likelihood Method to infer 

runout data, such as censored data for failure probability functions. MatLab software is employed to develop the 

computational program. To compare the obtained results, the Interior Point Algorithm is also presented, due to its 

wide use in problems involving linear and nonlinear quadratic programming. 
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1  Introduction 

In Brazil, the first railroads date from the second half of the 19th century, as well as the bridges builted for 

the circulation of these standard trains. Most of these structures remain in operation, for economic reasons, even 

more than a century after their construction. It is known that such bridges were designed with riveted connections, 

where they were not originally designed due to fatigue failure [1]. The assessment of the safety conditions of these 

bridges has an increasing relevance, as well as the techniques applied, as these bridges were designed for traffic 

conditions completely different from those that occur in the present times, which are increasingly intensified. As 

a consequence, it is known that certain sections whose bridges had been designed for loads of 90 kN / axis have 

undergone successive reinforcements, starting to support compositions with up to 200 kN / axis [2]. 

More robust and reliability-based techniques assist in the assessment and analysis of this type of problem in 

order to update the reinforcement and maintenance methodologies. Naturally, the search for the best efficiency of 

a process or the best performance of a structure leads us to think about the development of several routes to reach 

an optimal result through experimental methods. It is known that the idea of improving or optimizing a problem, 

implies some freedom to be able to modify it in order to obtain the best performance of it. The potential for changes 

is typically expressed in terms of the variations allowed in a group of parameters that can be defined as a vector 

1 2[ , ,..., ]T
n  θ , where are the number of design variables. The set of variables that provide the optimal value 

of the evaluated problem is called the optimal point and can also be represented by a vector * * * *
1 2[ , ,..., ]T

n  θ

. Optimizing implies the existence of a merit function (objective function) that can be improved and used as a 

measure of the effectiveness of the problem to be assessed. This function is called an objective function. They can 

be functions of a variable (one-dimensional) or multivariable (multidimensional). 
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2  Optimization Algorithms 

Optimization is a branch of mathematics applicable in several areas, focusing on some of the problems 

commonly encountered in structural engineering. Optimization can be defined as a process of searching for the 

maximum or minimum values of a function (or several functions), whose variables satisfy certain restrictions in 

the form of equality or inequality [3]. 

The set of points that maximize or minimize a function (or several functions) is called optimal solutions. The 

maximization of a function ( )f   can be converted into a minimization of ( )g  , where ( ) ( )g f   . Thus, 

maximizing a function ( )f   is the same as minimizing ( )f  . These functions are known as objective functions 

and represent the amount that you want to minimize or maximize in the problem. Figure 1, extracted and adapted 

from [4], shows the situation in which the point * generates the minimum value of a function ( )f   and the 

maximum negative value of the function ( )f  . 

 

 

 

  

 

 

 

Figure 1. Minimizing ( )f    is the same as Maximizing ( )f  . 

2.1 Interior Point Algorithm 

The numerical method of the interior point algorithms is a more robust method, proposed by Karmarkar [5] 

and extremely useful in solving problems that involve linear and nonlinear quadratic programming and can be 

adopted as an alternative to problems that cannot always be obtained by analytical means  [6]. The search for 

parameters is given by the interior of the feasible region, a different philosophy from the method that preceded it, 

also known as the Simplex method where the search for parameters is given towards the optimum of the border, 

that is, by the edges of the feasible region. 

Several models of Interior Point were developed, among these models can be highlighted the primal-dual 

method of logarithmic barrier, or simply barrier function, found in the Optimization Toolbox of Matlab® [7]. 

2.2 Genetic Algorithm 

Genetic algorithms (Genetics Algorithms - GA’s) are tools for optimization, which seek to improve results 

for any circumstance by stochastic methods. In engineering, the aim is, in general, to minimize resources and 

efforts and maximize results for certain tasks. In recent years, there has been a considerable increase in the 

proposals for new non-traditional, or also called modern, optimization methods, which deviate from the concept 

of the usual optimization techniques. 

These techniques can be bio-inspired, based on behaviors and characteristics of neurobiological systems, 

particle swarm, ant colony optimization, biology and molecules, for example. According to Rao [4], this is a 

technique inspired by natural genetics and the principles of natural selection, philosophically, it is based on the 

Darwinian theory of the evolution of species. The use of GA's to solve engineering problems becomes very 
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attractive, since, unlike classical methods that have limited applications, they are able to identify global solutions, 

which, in general, can converge to the optimal solution of the problem and not to an local solution [8]. 

GA applications in fatigue are found in the literature. Franulovic [9] they carried out an elastic - plastic study 

of the material under a cyclic loading. Due to the complexity of the problem, routines with genetic operators were 

used to search for the parameters in order to obtain a reliable convergence for the results comparing with 

experimental data. 

3  Modeling Fatigue Strength Curves 

The fatigue strength models of structural details are traditionally presented in the form of S-N curves that 

relate the stress range,  , for the percentile probability of the number of cycles to failure, N. Such curves can 

be obtained from fatigue tests. at constant stress amplitudes (CAFL). 

The type of curve model to be analyzed is linear on a logarithmic scale. In this type of modeling the fatigue 

limit is fixed. In general, percentile curves are used to assess the voltage range corresponding to a specific number 

of cycles. In terms of international normative codes for riveted connections, there are class “D” curves for AREMA 

[10] and class 71 for Eurocode [11], in which curves with failure probabilities of 2.25% and 5% are assumed, 

respectively. In any case, the fatigue limit is assumed arbitrarily, since the model is not capable of predicting values 

for  . The S-N curves present an exponential behavior in the N domain (eq. 1), requiring linearization on a 

logarithmic scale in order to facilitate the interpretation of the data (eq.2 and 3). 

                                                    ,mN k                                                                        (1) 

                         ln( ) ln( ) ln( ), ln( ) ln( )N m k                                                                 (2) 

                                            ln( ),x m y k y v                                                                                (3) 

To write these curves within a probabilistic field, the median curve is added to an Inverse Cumulative 

Probability Distribution, assumed for a given probability, as well as the standard deviation. As shown in eq. 4 

below. 

                                                        1( ) x xx x y F p S                                                                              (4) 

In this way, S-N-p curves are generated that belong to an assumed probabilistic field. Sarkani et al.[12], for 

example, made analyzes assuming these correspondences of distributions. The probability function to be used for 

life fatigue is of the Lognornal type, in which it is equivalent to assume the Normal distribution for the logarithmic 

domain. 

The pdf and cdf of can be determined according to eq. 5 and 6, respectively. 
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4  Maximum Likelihood Estimation 

The principle of maximum likelihood was a technique initially developed by R. A. Fisher in 1920 [13]. It is 
a methodology for estimating parameters consolidated within statistics, as its estimators have characteristics that 
show a good performance. This method consists of finding the set of parameters that maximizes the likelihood 
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function of the population samples. The likelihood function consists of the joint probability density function of the 
random variables that represent the samples. 

In the study of fatigue models, Pascual and Meeker [14] proposed a 5-parameter probabilistic model using 
the MLE (Maximum Likelihood Estimation). Pascual [15] Proposed an MLE model considering experimental 
multi-factors. The method determines the S-N curve that describes the most likely location of each test result, 
including runout. Sarkani et al. [12] it presented a generalized methodology based on MLE for inclusion of runouts, 
where it is possible to consider different probability distributions for life to fatigue. An adopted model was based 
on the Weibull distribution, was demonstrated and applied to a set of real data to estimate the median curves and 
confidence intervals. 

 
The MLE method consists of maximizing the likelihood of a set of parameters calculated to fit the model. 

For a given set of independent 
ix  observations obtained at different levels 

iy , the likelihood function is given by 

eq. 7: 

                                                       
1

1

( ; , ) 1 ( ; , )i i

n

x i i x i i
i

f x y F x y
 



   θ θ θ                                                     (7) 

 

Where 1i   to fail and 0i   runout; ( ; , )x i if x y θ  and ( ; , )x i iF x y θ  are, respectively, the probability 

density function and the cumulative probability distribution of ix ; θ  is the vector of model parameters. 

 
In general, it is easier to work with the likelihood function in a logarithmic domain, because in this form 

the maximization is done by a sum instead of a product. Thus, the log-likelihood function ( ; )i iL z θ  for a single 

test point in the sample is given by eq. 8: 
 

                                          ( ; ) ln ( ; , ) (1 ) ln 1 ( ; , )i i i x i i i x i iL z f x y F x y      θ θ θ                                           (8) 

 
Thus, the log-likelihood function for the entire data set,  ( ) ln ( )  θ θ , is given by the contribution of each 

point in the sample, according to eq. 9.  

                                                                     
1

( ) ( ; )
n

i i
i

L z


  θ θ                                                                             (9) 

 
The vector with the parameters θ  can be solved by applying optimization algorithms in order to maximize 

the function ( ) θ . For this, a subroutine was developed using a native function known as “ga” available in 

MATLAB Global Optimization Toolbox ™ [16] and the “fmincon” available in MATLAB Optimization Toolbox 
™ [7] in which it presents the Interior Point Algorithm. 

 
These algorithms were used in order to minimize ( ) θ  (equivalent to maximize ( ) θ ) when initial 

restrictions are given to θ , in order to limit the search space within a doable region. The constraints (constraints) 
of the parameters can be introduced directly into the algorithm through a linear inequality, according to the 
optimization eq. 10 expressed below: 

 
                                                                  min ( ) tal que  

θ
θ A θ b                                                              (10) 

 
Where  A  is a matrix and b  is a vector created to establish restrictions, based on the doable domain of each 

parameter. The generalization of the constraint matrix is shown in the equation being applied to both algorithms 
in eq. 11: 
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5  Results Obtained 

The input dates used in this paper was obtained by Taras and Greiner [17], Pedrosa et al. [18] and  Mayorga 

et al. [19] in a experimental campaign in some bridges in the workdwide. In this work, tests by different authors 

were compiled, in which the failure points and runout points of structural details in real scale of bridges with 

riveted connections are specified. With the application of the MLE method in relation to the optimization 

algorithms, new parameters were obtained for m, k e 
xS . 

Figure 2 presents the median curves and the S-N-p curves of 2.25% and 97.5% of probability of failure, 

highlighting the generation of the curves the parameters found by the estimator according to the IP optimization 

algorithm. Figure 3 shows the results generated by GA, which was obtained for 167 generations, as shown in figure 

4.  

 

 

 

 

 

 

 

 

 
 

Figure 2. S-N-p Curves generated by IP. 
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Figure 3.  S-N-p Curves generated by GA. 

 
 

 
Figure 4. 167 generations carried out by GA. 

 
 

Table 1 shows the comparison of the optimal parameters obtained between the optimization algorithms. There 
is a very small difference between the results, showing a good convergence of the MLE models. 

 

Table 1. Comparison of the obtained parameters. 

 k m Sx Exp(k) 
MLE - IP 28.5813 -3.0003 1.1343 2,58.1012 

MLE - GA 28.5675 -2.9975 1.1343 2,55.1012 

Difference (%)  0.048 0.093 0 1.162 
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6  Conclusions 

This was an initial approach to the application of a genetic algorithm to determine S-N-p curves for riveted 

details. GA showed good results in estimating the parameters found. The xS parameter coincided in both 

algorithms. Note that the biggest difference in relation to the search for the results obtained by the interior point 

algorithm is in relation to the transformation of k for the N domain with 1.162%. Although in absolute terms this 

value is small, this greater difference in relation to the other parameters is due to the great variability that exists in 

the N domain, and how sensitive this parameter is for determining fatigue life.  
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