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Abstract. Populational algorithms are strongly dependent on parameters, and among them, the size of the pop-
ulation directly impacts the search for optimized solutions and computational cost. As the population grows, the
slice of the inspected search space also tends to expand, allowing new optimums to be discovered. However, the
increase in this population also implies an increase in the objective function calls, consequently increasing the al-
gorithms’ computational effort and execution time. When the objective function calls are the execution bottleneck,
the number of individuals observed at each iteration is decisive for the weight given to exploration and exploita-
tion. In general, the choice of population size happens empirically, through the user’s experience. However, the
dynamic treatment of population size can be a more interesting choice. In optimization problems that require a
simulator, such as optimization in mechanical and structural engineering, the decrease in computational cost is
very significant. Moreover, many simulations have high computational costs, motivating the study of a less empir-
ical approach in population size choosing. Here we propose and study an approximation metamodel in the form
of a criterion for dynamic treatment of the population size of a Particle Swarm Optimization algorithm applied to
mechanical engineering optimization problems. This metamodel considers that particles that are very close and
with similar speeds will have similar behavior, tending to the same solution, thus allowing one of the particles to
be eliminated. Comparative results are presented using the proposed strategy, showing that it achieved the desired
expectations.
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1 Introduction

In populational algorithms like PSO (Particle Swarm Optimization) [1], population size is crucial for an
efficient search process. The larger the population, the greater the slice of the inspected search space, which leads
to finding better solutions. However, population size growth also increases the number of fitness function calls,
increasing the complexity of the algorithm and its execution time. With the fitness function max calls limitation, the
population size growth, even if it does not influence the algorithm complexity, decreases the convergence capacity
of the algorithm while increasing the exploration capacity, a fact that may or may not be desirable[2].

In general, the choice of population size happens empirically, through the user’s experience, considering
characteristics of the algorithm and the problem to be treated [3]. This negligent adjustment can lead to an under-
utilization of the algorithm both in results and in computational cost [4]. Thus, the dynamic treatment of population
size may be a more interesting choice [5].

In this paper, we propose and study an approximation metamodel as a swarm optimization algorithm popula-
tion size dynamic treatment criterion applied to structural optimization problems. This metamodel considers that
close particles and with similar speed should have similar behaviors, tending to the same solution, thus allowing
one of the particles to be eliminated.

To assess the performance of the proposed strategy, a set of five examples taken from the optimization liter-
ature were performed and compared. The results show that the use of such scheme for dynamic reduction of the
population size is advantageous in most scenarios.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Foz do Iguaçu/PR, Brazil, November 16-19, 2020



Template for CILAMCE 2020 (enter here the short title of your paper)

2 Proposed Criterion

The original PSO algorithm proposed by Kennedy and Eberhart [6], proposed a population of P individuals
who move in the space Rn. Each individual i, also called a particle, represents a possible solution and is formed
by two vectors xij and vij , with i ∈ {1, 2, ..., P}, j ∈ {1, 2, ..., n}, xij ∈ R, vij ∈ R, where xij represents the
position of the particle, vij its speed and n the space dimension. Each particle also knows its best position, pBest
and the position of the best particle among all gBest. This knowledge is called social and cognitive knowledge,
respectively. In this way, the position and speed vectors are calculated for each iteration t of the algorithm according
to the following expressions:

vij(t+ 1) = vij(t) + c1.r1(x
i
pBest − xij) + c2.r2(x

gBest
j − xij) (1)

xij(t+ 1) = xij(t) + vij(t+ 1) (2)

where c1 and c2 are coefficients that control the influence of social and cognitive knowledge on particles, and r1
and r2 are two random values that seek to add non-determinism to the model.

Here we propose a criterion for dynamically reducing the number of p particles during the execution of the
PSO algorithm using the tournament system[7].

Let σ be a collision threshold for the position of two particles, a and b any two particles, if |xa−xb| < σ and
|va − vb| < σ, we will randomly eliminate one of these particles.

The idea behind this modification is that if two particles are very close and with similar speeds, they will
behave similarly, tending to the same solution. Even though the coefficients r1 and r2 seek to diversify the paths
taken by these particles, the social and cognitive knowledge aims to lead them along the same path.

3 Computational Experiments

Five benchmark test problems were carried out to assess the performance of the proposed criterion. To
the original Kennedy and Eberhart algorithm[6], an adaptive penalty method for handling constraints [8] and a
parameter for inertia control [9] were added. In all problems, for each variation in the parameters, 25 independent
runs were performed to provide more statistical reliability to the results. The values of c1 and c2 were set as
1, 496[10]. For each problem, a set of runs of the algorithm without the particle reduction criterion was performed.
It served as a comparison parameter for the runs where the proposed approach was used. In all cases, executions
were carried out with an initial population P = {30, 60, 90, 120, 150, 180, 210, 240, 270, 300}. The σ values were
1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8, 10−9 and 10−10.

3.1 Tension/Compression Spring design

The purpose of this problem is to reduce the volume of a coil string under a constant tension/compression
load as [11]. The total number of calls to the objective function was 36000 in each independent execution. Table
1 presents the best results obtained considering the 25 independent runs for all combinations of initial population
and collision thresholds.

From Table 1, we can see that for the Tension/Compression Spring problem regardless of the initial population
size, the dynamic reduction of the population size is always advantageous. The results obtained are very close to
the best-known result [12], 0.012665. From 10−8 the particle collision always occurs at the same time as we can
see in Table 2. However, from 10−6, even if the collision threshold decreases, the result obtained is the same.
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Table 1. The best solutions found for the Tension/Compression Spring problem considering the initial population
size and the collision threshold.

Initial

Population

Collision

Threshold No particle

reduction
1 10−1 10−2 10−3

30 0,0126982811259 0,0127030311611 0,0126661508956 0,0126837778465 0,0126982811259

60 0,0127137251662 0,0126721396284 0,012677913757 0,0127047227329 0,0126962690899

90 0,0127270746713 0,0126940928398 0,0126714182919 0,0127115319714 0,0127077495493

120 0,0127114113637 0,012683554753 0,0126912131431 0,0126927451476 0,0127005028697

150 0,0126960634072 0,0126761185116 0,0126871532126 0,0126856657554 0,0127247917023

180 0,0127665776853 0,0126808217558 0,0126842431208 0,0126814782792 0,0127037417042

210 0,0127237783055 0,0126893201624 0,0126777460901 0,0127075413577 0,0127498629112

240 0,0127091692276 0,0127091258552 0,012680445816 0,0127169427027 0,0126873761743

270 0,012773239133 0,0126775412869 0,0127073244463 0,0127088563818 0,0127587890458

300 0,0127785340375 0,0126700251943 0,012703855212 0,0127344534303 0,0127950225467

Initial

Population

Collision

Threshold
10−4 10−5 10−6 , 10−7 ,

10−8 , 10−9 , 10−10

30 0,0126982811259 0,0126965162286 0,0126982811259

60 0,0127085320046 0,0126959504672 0,0127093633157

90 0,0126959313686 0,0127083040738 0,0127083040738

120 0,0127324587628 0,0127324587628 0,0127324587628

150 0,0127276538722 0,012748757847 0,012748757847

180 0,0127491918422 0,0127491918422 0,0127491918422

210 0,0127375812077 0,0127375812077 0,0127375812077

240 0,0127609060254 0,0127918196685 0,0127918196685

270 0,0127202914273 0,0127202914273 0,0127202914273

300 0,0127529396136 0,0127529396136 0,0127529396136

Table 2. Particle quantity final mean for the Tension/Compression Spring problem considering the initial particle
quantity and the collision threshold.

Initial

Population

Collision

Threshold
1 10−1 10−2 10−3 10−4

30 1,04 1,08 3,96 16,76 21,2

60 1,04 1,32 6,68 29,16 37,56

90 1,04 1,28 6,92 48,32 61,88

120 1,04 1,08 14,28 61,96 78,16

150 1,04 1,16 18,36 93,84 108,52

180 1,04 1,12 16,96 98,68 120,12

210 1,04 1,2 21,72 119,32 139,8

240 1,04 1,12 20,8 143,4 165,68

270 1,04 1,12 24,72 173,4 179,24

300 1,04 1,2 25,16 195,72 208,72

Initial

Population

Collision

Threshold
10−5 10−6 10−7 10−8 ,

10−9 , 10−10

30 22,88 23,04 24,12 24,12

60 39,88 41,32 41,4 41,76

90 64,84 64,8 64,84 64,84

120 81,92 82,4 82,4 80,44

150 108,4 107,16 107 107

180 120,32 120,24 120,24 120,24

210 139,08 140,72 140,72 140,72

240 167,52 167,52 167,52 167,52

270 180,52 180,52 180,52 180,52

300 209,64 209,88 209,88 209,88

3.2 Speed Reducer design

The objective of this problem is to minimize the weight of a speed reducer as presented in [13]. The number
of fitness functions calls was 36000 in each independent execution. Table 3 presents the best results obtained
considering the 25 independent runs for all combinations of initial population and collision thresholds.
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Table 3. The best solutions found for the Speed Reducer problem considering the initial population size and the
collision threshold.

Initial

Population

Collision

Threshold No particle

reduction
1 10−1 10−2 10−3 10−4 , 10−5 , 10−6 ,

10−7 , 10−8 , 10−9 , 10−10

30 3000,22367543 3026,69819368 2996,9476716 2997,17612869 3000,22367543 3000,22367543

60 3000,11712848 3016,79944912 3005,39137576 2997,89403302 3000,11712848 3000,11712848

90 2999,13099283 3008,08026164 3007,56153083 3001,04996962 3002,61646461 2999,13099283

120 3001,9928708 2997,70245138 2996,84329213 2999,54860211 3002,25659372 3001,9928708

150 3005,18839925 2996,52719254 2997,53465328 3002,68181446 3001,36488904 3005,18839925

180 3001,54326857 2996,64745821 3005,80147339 3003,81193376 3008,59231679 3001,54326857

210 3005,26461488 3026,69029466 3000,52008988 3007,69754048 3005,26461488 3005,26461488

240 3007,85272681 3035,63033176 2997,07851085 3007,1647863 3013,47559077 3007,85272681

270 3010,59948912 2996,45862562 2997,46021276 3004,79387667 3011,01421377 3010,59948912

300 3008,57641118 3026,68857298 3009,59661205 3007,68382384 3008,57641118 3008,57641118

Analyzing Table 3, we observe that considering the initial quantity of particles, in 9 of 10 scenarios, the
dynamic reduction of the population size was advantageous. Also, from 10−4, the collision threshold’s reduction
does not influence the particle reduction and the final result. It is because, from this value, there is almost no
collision between the particles, as shown in Table 4. The best-known solution [12] to this problem is 2996.3481.

Table 4. Particle quantity final mean for the Speed Reducer problem considering the initial particle quantity and
the collision threshold.

Initial

Population

Collision

Threshold
1 10−1 10−2 10−3 10−4 ,

10−5

10−6 , 10−7 ,

10−8 , 10−9 , 10−10

30 1,08 1,16 4,44 29,36 30 30

60 1,04 1,16 14,24 59,52 60 60

90 1,04 1,04 24,04 89,2 89,96 90

120 1,04 1,12 39,64 119,12 119,96 119,96

150 1,04 1,12 56,56 149,16 150 150

180 1,04 1,12 78,12 179,48 180 180

210 1,04 1,12 99,52 209,6 209,96 209,96

240 1,08 1,16 124,88 239,2 240 240

270 1,04 1,12 150,68 269,48 270 270

300 1,04 1,16 182,8 299 299,96 299,96

3.3 Welded Beam design

The objective of this problem is to minimize the cost of a welded beam as [8]. The total number of calls
to the objective function was 320000 in each independent execution. Table 5 presents the best results obtained
considering the 25 independent runs for all combinations of initial population and collision thresholds.

Table 5. The best solutions found for the Welded Beam problem considering the initial population size and the
collision threshold.

Initial

Population

Collision

Threshold No particle

reduction
1 10−1 10−2 10−3 10−4 ,10−5 ,10−6 ,

10−7 ,10−8 ,10−9 ,10−10

30 2,33623026054 2,3248238694 2,32486501317 2,32571056872 2,33623026054 2,33623026054

60 2,33116999317 2,32490423873 2,32472256468 2,33317094488 2,33679000247 2,33116999317

90 2,33672342083 2,32679827684 2,32506036747 2,33241503632 2,33670249933 2,33670249933

120 2,33835045196 2,32680386809 2,32467725578 2,33129694735 2,33676825611 2,33972334231

150 2,33315927522 2,32599374944 2,32505781892 2,33174563085 2,33315927522 2,33315927522

180 2,33135984688 2,32584835857 2,32488075268 2,3288078981 2,33838260156 2,33912564724

210 2,33009930785 2,32774634233 2,32773697039 2,33478296813 2,33528581999 2,33528581999

240 2,34460953053 2,33125733726 2,32457026935 2,33692346795 2,33269353811 2,32787151367

270 2,33866787114 2,32505950236 2,32785657702 2,33811608771 2,33388101311 2,33388101311

300 2,34231529814 2,32848411148 2,32530207171 2,33594284367 2,33987980916 2,33838330789

Analyzing Table 5, we can observe that regardless of the initial population size, the dynamic reduction of
the population size was always advantageous. Again, from 10−4, the reduction of the collision threshold does
not influence the final result. From 10−6, the collision threshold reduction does not influence population size
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reduction, as we can see in Table 6. The best-known result [14] for this problem is 1.724866.

Table 6. Particles quantity final mean for the Welded Beam design considering the initial population size and the
collision threshold.

Initial

Population

Collision

Threshold
1 10−1 10−2 10−3 10−4 10−5 10−6 , 10−7 ,

10−8 , 10−9 , 10−10

30 1 1 6,8 29,64 29,96 29,96 29,96

60 1,08 1 17,56 58,92 59,72 59,72 59,72

90 1 1 25,52 88,72 89,6 89,64 89,64

120 1 1 32,96 117,84 119,36 119,36 119,4

150 1 1 44,68 145,96 148,88 148,92 148,92

180 1 1 58,24 176,6 178,56 178,64 178,64

210 1 1 64,8 205,6 207,8 207,92 207,92

240 1,08 1 78,04 235,08 238,2 238,36 238,36

270 1,04 1 86,56 263,04 267,2 267,24 267,24

300 1,04 1 93,48 293,48 296,68 296,68 296,68

3.4 Pressure Vessel design

The objective of this problem is to minimize the weight of a cylindrical pressure vessel with two spherical
caps as [15]. There were 80000 calls to the objective function in each independent execution. Table 7 presents the
best results obtained considering the 25 independent runs for all combinations of initial population and collision
thresholds.

Table 7. The best solutions found for the Pressure Vessel design considering the initial particle quantity and the
collision threshold.

Initial

Population

Collision

Threshold No particle

reduction
1 10−1 10−2 10−3 ,10−4 ,10−5 ,10−6 ,

10−7 ,10−8 ,10−9 ,10−10

30 6078,96835992 6059,71433517 6111,53815168 6078,96835992 6078,96835992

60 6149,94262999 6060,48217516 6135,20583439 6149,94262999 6149,94262999

90 6121,26125975 6059,74965892 6229,48001112 6121,26125975 6121,26125975

120 6137,08748252 6068,76732361 6147,77479361 6137,08748252 6137,08748252

150 6114,31473115 6063,66464809 6082,89808163 6114,31473115 6114,31473115

180 6176,32880337 6064,16114343 6125,4298469 6194,31879251 6176,32880337

210 6114,57367747 6059,75760896 6147,43220529 6114,57367747 6114,57367747

240 6135,95859167 6059,72080164 6202,80608388 6135,95859167 6135,95859167

270 6136,51274403 6059,80794369 6129,60459092 6136,51274403 6136,51274403

300 6086,97908449 6076,81719046 6188,25534921 6103,69344382 6103,69344382

Analyzing Table 7, we observe that, again, independent of the initial population size, the dynamic reduction of
the population size was always advantageous. In this problem, the collision threshold reduction stopped influencing
particle reduction from 10−3, as shown in Table 8. The best-known result [16] for this problem is 5849.7617.

Table 8. Particles quantity final mean for the Pressure Vessel design considering the initial particle quantity and
the collision threshold.

Initial

Population

Collision

Threshold
1 10−1 10−2 10−3 , 10−4 , 10−5 , 10−6 ,

10−7 , 10−8 , 10−9 , 10−10

30 1,04 23,96 29,88 30

60 1,04 52,36 59,88 60

90 1,04 79,2 89,92 89,96

120 1 105,92 119,88 120

150 1,04 133,28 149,8 149,96

180 1,08 162,88 179,68 179,88

210 1 191,28 209,72 209,8

240 1,08 219,48 239,36 239,76

270 1,08 247,28 269,2 269,76

300 1,12 275,36 299,08 299,4
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3.5 Cantilever Beam design

The objective of this problem is to minimize the volume of a Cantilever Beam as shown in [8]. There were
35000 calls to the objective function in each independent execution. Table 9 shows the best results obtained
considering the 25 independent runs for all combinations of initial population and collision thresholds.

Table 9. The best solutions found for the Cantilever Beam problem considering the initial population size and the
collision threshold.

Initial

Population

Collision

Threshold No particle

reduction
1 10−1 10−2 10−3 , 10−4 , 10−5 , 10−6 ,

10−7 , 10−8 , 10−9 , 10−10

30 71466,7701795 188477,838597 71301,7019544 71466,7701795 71466,7701795

60 72048,7558079 188477,838597 71547,7815753 72048,7558079 72048,7558079

90 72699,7118653 84606,5502359 72803,6020529 72699,7118653 72699,7118653

120 81931,7457655 81835,0775044 72904,9286324 79440,2146461 81931,7457655

150 75896,588014 188477,838597 72606,5085339 75896,588014 75896,588014

180 73013,3054734 114861,241775 75405,4941606 73188,375981 73013,3054734

210 86550,2816143 88019,7024759 73071,1013437 86550,2816143 86550,2816143

240 75630,4802142 161616,333813 80595,6731905 80974,9671788 75630,4802142

270 85167,8530706 112257,340492 79927,2314887 85167,8530706 85167,8530706

300 74785,5966223 133998,643981 73862,0904634 77937,979454 74785,5966223

Analyzing Table 9, we observe that in 7 of the ten scenarios, the dynamic reduction of the population size was
advantageous. In the other three scenarios (initial population of 90, 180, and 240), even though the result without
particle reduction was the best, this was equated to some with particle reduction. It is also interesting to note in this
problem that the collision threshold with value 1, generated an excessive and premature reduction of the particles
causing an unwanted convergence to local minimums. For this problem, the best-known result [17] is 63893.52.

Table 10. Particles quantity final mean for the Cantilever Beam design considering the initial population size and
the collision threshold.

Initial

Population

Collision

Threshold
1 10−1 10−2 10−3 ~10−4 , 10−5 , 10−6 ,

10−7 , 10−8 , 10−9 , 10−10

30 1,08 20,92 29,96 30 30

60 1,08 43,96 59,8 60 60

90 1,16 65,64 89,64 90 90

120 1,12 87,56 119,44 119,96 120

150 1,12 108,68 149,56 150 150

180 1,12 129,2 179,48 179,96 180

210 1,08 150,76 209,64 210 210

240 1,08 172,12 239,32 239,96 240

270 1,08 196,52 269,16 270 270

300 1,08 218,4 298,88 300 300

4 Concluding remarks and future works

In this work, we propose and study an approximation metamodel in the form of a particle reduction criterion
for particle swarm algorithms. The expected and confirmed behavior was that if two particles are very close and
similar speeds, they will also have similar behavior, tending to the same solution, generating a redundancy in the
analyzed search space. With the elimination of one of these particles, we no longer waste calls to the objective
function and achieved slightly better results than when we let these particles survive until the end of the algorithm’s
execution.

A more detailed analysis of the collision threshold is still needed. In the experiments carried out, a single
value for the collision threshold was used for the speed and position of all decision variables. It is likely that the
choice of different values according to the amplitude of each decision variable’s domain generates more significant
results as well as the use of different thresholds for the particles position and speed.

As the objective of this work was to confirm the hypothesis that the reduction of particles during the execution
of a PSO would be attractive, the algorithm used as a comparison was simple and sometimes presented worse
results than the best already knowns. However, experiments with more refined PSO modifications can also generate
more encouraging results.
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An analysis of the solution’s stagnation would also be interesting since the main objective of the proposed
strategy is to avoid waste in calls to the objective function. Analyzing the solution’s stagnation during the execution
of the algorithm can allow the execution to end even before all calls to the objective function are made or even the
reinsertion of particles to feed the search for new optimums.

Finally, it is expected to show in the future that the proposed metamodel is also efficient in other problems
classes, such as problems that require a simulator, where the formulation is not explicit and in other knowledge
areas problems, besides structural optimization.
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