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Abstract. The control of a satellite can be designed with success by linear control theory if the satellite has slow
angular motions. However, for fast maneuvers, the linearized models are not able to represent all the perturbations
due to the effects of the nonlinear terms present in the dynamics which compromises the system’s performance.
Therefore, a nonlinear control technique yields better performance. Nonetheless, these nonlinear control tech-
niques can be more sensitive to uncertainties. One candidate technique for the design of the satellite's control law
under a fast maneuver is the State-Dependent Riccati Equation (SDRE). SDRE provides an effective algorithm for
synthesizing nonlinear feedback control by allowing nonlinearities in the system states. The Brazilian National
Institute for Space Research (INPE, in Portuguese) was demanded by the Brazilian government to build remote-
sensing satellites, such as the Amazonia-1 mission. In such missions, the satellite must be stabilized in three-axes
so that the optical payload can point to the desired target. Although elsewhere the application of the SDRE tech-
nique has shown to yield better performance for the missions developed by INPE, a subsequent important question
is whether such better performance is robust to uncertainties. In this paper, we investigate whether the application
of the SDRE technique in the AOCS is robust stable to uncertainties in the missions developed by INPE. Moreover,
in order to handle such uncertainty appropriately, we propose a combination of SDRE with H-infinity based on a
left coprime factorization. In such a way that the attention is moved to the size of error signals and away from the
size and bandwidth of selected closed-loop transfer function. The initial results showed that SDRE controller is
robust to 5%, at least, variations in the inertia tensor of the satellite.
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1 Introduction

The design of a satellite attitude and orbit control subsystem (AOCS) that involves plant uncertainties, large
angle maneuvers and fast attitude control following a stringent pointing, requires nonlinear control methods in
order to satisfy performance and robustness requirements. An example is a typical mission of the Brazilian National
Institute for Space Research (INPE), in which the AOCS must stabilize a satellite in three-axes so that the optical
payload can point to the desired target with few arcsecs of pointing accuracy.

One candidate method for a nonlinear AOCS control law is the State-Dependent Riccati Equation (SDRE)
method, originally proposed by [1] and then explored in detail by [2–4]. SDRE is based on the arrangement of the
system model in a form known as state-dependent coefficient (SDC) matrices. Accordingly, a suboptimal control
law is carried out by a real-time solution of an algebraic Riccati equation (ARE) using the SDC matrices by means
of a numerical algorithm.

Elsewhere, we showed State-Dependent Riccati Equation (SDRE) is a feasible non-linear control technique
that can be applied in satellites developed by INPE [5]. Moreover, we showed, through simulation using a Monte
Carlo perturbation model, SDRE provides better performance than the PID controller, a linear control technique.

In this paper, we tackle the next fundamental problem: robustness. We evaluate robustness from two perspec-
tives: (1) parametric uncertainty of the inertia tensor and (2) a uniform attitude probability distribution. Through
the combination of these two perspectives, we grasp the robustness properties of SDRE in a broader sense. In order
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to handle the uncertainty appropriately, we combine SDRE with H∞.
SDRE was originally proposed by [1] and then explored in detail by [4]. A good survey of the SDRE method

can be found in [2] and its systematic application to deal with a nonlinear plant in [3]. The SDRE method was
applied by [5–9] for controlling a nonlinear system similar to the six-degree of freedom satellite model considered
in this paper.

The application of SDRE method, and, consequently, the ARE problem that arises, have already been studied
in the available literature, e.g., [10] investigated the approaches for the ARE solving as well as the resource re-
quirements for such online solving. Recently, [7] proposed the usage of differential algebra to reduce the resource
requirements for the real-time implementation of SDRE controllers. In fact, the intensive resource requirements
for the online ARE solving is the major drawback of SDRE. Nonetheless, the SDRE method has three major
advantages: (a) simplicity, (b) numerical tractability and (c) flexibility for the designer, being comparable to the
flexibility in the LQR [7].

SDRE method can be readily extended to nonlinear H∞ [4]. The interest in H∞ optimization for robust con-
trol of linear plants is mostly attributed to the influential work of [11], in which the problem of sensitivity reduction
by feedback is formulated as an optimization problem. Later, [12] addressed the problem of robustly stabilizing
a family of linear systems in the case where such family was characterized by H∞ bounded perturbations of a
normalized left coprime factorization of a nominal system.

The initial results showed that SDRE controller is robust to 5%, at least, variations in the inertia tensor of
the satellite. This paper is organized as follows. In Section 2, the problem description is presented. In Section 3,
the satellite physical modeling is reviewed. In Section 4, we explore the state-space model and the controllers. In
Section 5, we share simulation results. Finally, the conclusions are shared in Section 6.

2 Problem Description

The SDRE technique entails factorization (that is, parametrization) of the nonlinear dynamics into the state
vector and the product of a matrix-valued function that depends on the state itself. In doing so, SDRE brings the
nonlinear system to a (nonunique) linear structure having SDC matrices given by Eq. (1).

~̇x = A(~x)~x+B(~x)~u

~y = C~x (1)

where ~x ∈ Rn is the state vector and ~u ∈ Rm is the control vector. Notice that the SDC form has the same structure
as a linear system, but with the system matrices, A and B, being functions of the state vector. The nonuniqueness
of the SDC matrices creates extra degrees of freedom, which can be used to enhance controller performance,
however, it poses challenges since not all SDC matrices fulfill the SDRE requirements, e.g., the pair (A,B) must
be pointwise stabilizable.

The system model in Eq. (1) is subject of the cost functional described in Eq. (2).

J( ~x0, ~u) =
1

2

∫ ∞
0

(~xTQ(~x)~x+ ~uTR(~x)~u)dt (2)

where Q(~x) ∈ Rn×n and R(~x) ∈ Rm×m are the state-dependent weighting matrices. In order to ensure local
stability, Q(~x) is required to be positive semi-definite for all ~x and R(~x) is required to be positive for all ~x [10].

The SDRE controller linearizes the plant about the current operating point and creates constant state space
matrices so that the LQR method can be used. This process is repeated in all samplings steps, resulting in a
pointwise linear model from a non-linear model, so that an ARE is solved and a control law is computed also in
each step. Therefore, according to LQR theory and Eq. (1) and (2), the state-feedback control law in each sampling
step is ~u = −K(~x)~x and the state-dependent gain K(~x) is obtained by Eq. (3) [3].

K(~x) = R−1(~x)BT (~x)P (~x) (3)

where P (~x) is the unique, symmetric, positive-definite solution of the algebraic state-dependent Riccati equation
(SDRE) given by Eq. (4) [3].

P (~x)A(~x) +AT (~x)P (~x)− P (~x)B(~x)R−1(~x)BT (~x)P (~x) +Q(~x) = 0 (4)

Considering that Eq. (4) is solved in each sampling step, it is reduced to an ARE. Finally, the conditions for
the application of the SDRE technique in a given system model are [3]:

1. A(~x) ∈ C1(Rw)
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Figure 1. H∞ robust stabilization problem with left coprime factorization [13].

2. B(~x), C(~x), Q(~x), R(~x) ∈ C0(Rw)
3. Q(~x) is positive semi-definite and R(~x) is positive definite
4. A(~x)x =⇒ A(0)0 = 0, i.e., the origin is an equilibrium point
5. pair(A,B) is pointwise stabilizable (a sufficient test for stabilizability is to check the rank of controllability

matrix)
6. pair(A,Q

1
2 ) is pointwise detectable (a sufficient test for detectability is to check the rank of observability

matrix)

2.1 SDRE with H∞

SDRE method can be readily extended to nonlinear H∞ [4]. Consider the general nonlinear dynamics using
SDC as:

ẋ = A(x)x+B1(x)w +B2(x)u

z = C1(x)x+D12(x)u

y = C2(x)x+D21(x)u

(5)

where ~x ∈ Rn is the state vector, ~u ∈ Rm is the control vector, ~w ∈ Rm is the vector of exogenous signals (e.g.,
disturbances) and ~z ∈ Rn is the vector of “error“ signal which is to be minimized in some sense to meet the control
objectives. Furthermore, the additional functions are C0(Rw).

Consider such a state-space model, Eq. (5), described by a transfer functionG. Now consider the stabilization
of plant G which has a normalized left coprime factorization [12, 13]:

G = M−1N (6)

then a perturbed plant model Gp can be written as [13]:

Gp = (M + ∆M )−1(N + ∆N ) (7)

where ∆M , ∆N are stable unknown transfer functions which represent the uncertainty in the nominal plant G.
The objective of robust stabilizationH∞ is to stabilize not only the nominal plantG, but a family of perturbed

plants defined by [12, 13]:

Gp = {(M + ∆M )−1(N + ∆N ) :: ||[∆M ∆N ]||∞ < ε} (8)

where ε > 0 is the stability margin. To maximize this stability margin is the problem of H∞ robust stabilization
of normalized coprime factor plant descriptions [12]. For the positive feedback of Fig. 1, the perturbed plant is
robustly stabilizable if and only if the nominal feedback is stable and [12, 13]

||

K
I

 (I −GK)−1M−1||∞ ≤ ε−1 (9)

The maximum stability margin ε and the corresponding minimum γ are given as [12]:

γmin = ε−1max = (1 + ρ(XZ))
1
2 (10)

where ρ denotes the spectral radius (maximum eigenvalue) and for the initial state-space realization Z and X are
solutions of AREs.
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Z and X are the solutions to the AREs [12, 13]:

(A−BS−1DTC)Z + Z(A−BS−1DTC)T − ZCTR−1CZ +BS−1BT = 0

(A−BS−1DTC)Tx+X(A−BS−1DTC)−XBS−1BTX + CTR−1C = 0

R = I +DDT

S = I +DTD

(11)

A controller which guarantees that [12, 13]:

||

K
I

 (I −GK)−1M−1||∞ ≤ γ (12)

for a specified γ > γmin, is given by:

KH∞ =

A+BF + γ2(LT )−1ZCT (C +DF ) γ2(LT )−1ZCT

BTX −DT


F = −S−1(DTC +BTX)

L = (1− γ2)I +XZ

(13)

Therefore, regarding the combination of SDRE and H∞ the procedure to compute the controller that maxi-
mizes the stability margin for the perturbed plants in each step is:

1. Reconstruct the matrices using the SDC form;
2. Solve the two ARES of Eq. (11) computing X and Z;
3. Compute γmin using Eq. (10);
4. Define a state-space model (A,B,C,D) using X , Z and a γ > γmin by Eq. (13);
5. Solve the third ARE that results from the state-space model described by Eq. (13), which leads to PKH∞

as
the unique, symmetric, positive-definite solution of such ARE;

6. Compute the controller K for the original system using K(~x) = R−1(~x)B2(~x)PKH∞
(~x).

It is known that if a controller can be found using that procedure, the exogenous signal will be locally atten-
uated by γ in each step [4, 12, 13].

3 Satellite Physical Modeling

The focus is on a typical mission developed by INPE, in which the AOCS must stabilize a satellite in three-
axes so that the optical payload can point to the desired target. Next subsections explore the kinematics and the
rotational dynamics of the satellite attitude available in the simulator.

3.1 Kinematics

Given the ECI reference frame (Fi) and the frame defined in the satellite with origin in its centre of mass (the
body-fixed frame, Fb), then a rotation R ∈ SO(3) (SO(3) is the set of all attitudes of a rigid body described by
3 × 3 orthogonal matrices whose determinant is one) represented by a unit quaternion Q = [q1 q2 q3 | q4]T can
define the attitude of the satellite.

Defining the angular velocity ~ω = [ω1 ω2 ω3]T of Fb with respect to Fi measured in the Fb, the kinematics
can be described by Eq. (14) [14].

Q̇ =
1

2
Ω(~ω)Q

Ω(~ω) ,


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0


(14)
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where the unit quaternion Q satisfies the following identity: q21 + q22 + q23 + q24 = 1.
Eq. (14) allows the prediction of the satellite’s attitude if it is available the initial attitude and the history of

the change in the angular velocity (Q̇ = F (ω, t)). Another possible derivation of the Eq. (14) is using the vector g
(Gibbs vector or Rodrigues parameter) as Q = [gT |q4].

Q̇ = −1

2

ω×
ωT



q1

q2

q3

 +
1

2
q4

13×3

0

 ~ω (15)

where ω× is the cross-product skew-symetric matrix of ~ω and 1 is the identity matrix. Note the Gibbs vector is
geometrically singular since it is not defined for 180◦ of rotation [15], nonetheless, the Eq. (15) is global.

3.2 Rotational Dynamics

The satellite has a set of 3 reaction wheels, each one aligned with its principal axes of inertia, moreover,
such type of actuator, momentum exchange actuators, does not change the angular momentum of the satellite.
Consequently, it is mandatory to model their influence in the satellite, in particular, the angular momentum of the
satellite is defined by Eq. (16).

~h = (~I −
3∑

n=1

In,sana
T
n )~ω +

3∑
n=1

hw,n ~an (16)

where In,s is the inertia moment of the reaction wheels in their symmetry axis ~an, hw,n is the angular momentum
of the n reaction wheel about its centre of mass (hw,n = In,sa

T
nω + In,sωn) and ωn is the angular velocity of the

n reaction wheel.
One can define Ib = ~I −

∑3
n=1 In,sana

T
n . Using Ib, the motion of the satellite is described by Eq. (17).

Ib~̇ω
b = ~gcm − ω×(Ib~ω +

3∑
n=1

hw,n ~an)−
3∑

n=1

gn ~an (17)

where gcm is the net external torque and gn are the torques generated by the reactions wheels ( ˙hw,n = gn).

4 Controller Design

Two dynamics states must be controlled: (1) the attitude (perhaps described by unit quaternions Q) and (2)
its stability (Q̇, in other words, the angular velocity ω of the satellite). The following subsections explore the
state-space modeling and the controllers'synthesis.

4.1 Nonlinear Control based on State-Dependent Riccati Equation (SDRE) Controller

Assuming that there are no net external torques (gcm = 0), the state space model can be defined using Eq. (14)
(Ω) and (17), however, the SDC matrices do not fulfill the SDRE requirements, in particular, the pair (A,B) is not
pointwise stabilizable.

An alternative option for the definition of the SDC matrices is to use Eq. (15), which leads to Eq. (18).

ẋ1
ẋ2

 =

−
1
2

ω×
ωT

 0

 1
2q4I3×3

0


0 0 −I−1b ω×Ib + I−1b (

∑3
n=1 hw,nan)×


x0
x2

 +

 0

−I−1b

[
u1

]

[
y
]

= 1

x0
x2


(18)

Eq. (18) has been shown to satisfy SDRE conditions described in Section 2.
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Table 1. Satellite characteristics, initial conditions and references.

Name Value

Satellite Characteristics

inertia tensor (kg.m2)


310.0 1.11 1.01

1.11 360.0 −0.35

1.01 −0.35 530.7


Actuators Characteristics - Reaction Wheels

inertia tensor of 3 reaction wheels (kg.m2) diag(0.01911, 0.01911, 0.01911)

maximum torque (N.m) 0.075

maximum angular velocity (RPM ) 6000

Initial conditions

attitude (degrees, XYZ)
[
0 0 180

]T
angular velocity (radians/second, XYZ)

[
0 0 0.024

]T
References for the controller

solar vector in the body (XYZ)
[
1 0 0

]T
angular velocity (radians/second, XYZ)

[
0 0 0

]T

4.2 Nonlinear Control based on State-Dependent Riccati Equation (SDRE) with H∞ Controller

Although the SDRE with H∞ controller uses the Eq. (18), it follows the procedure defined in Subsection 2.1.
Such a procedure requires the solving of three AREs in each step, instead of one ARE as usual in the SDRE
controller.

5 Simulation Results

A simulation was conducted with the full Monte Carlo perturbation model described as follows: (1) the ini-
tial Euler angles of the nonlinear spacecraft system are randomly selected using independent uniform distributions
(minimum = −180◦, maximum = 180◦); (2) the initial angular velocity are randomly selected using indepen-
dent uniform distributions (minimum = −0.01 rad/s, maximum = 0.01 rad/s), and (3) each element of the
inertia tensor defined in Table 1 is changed accordingly a normal distributionN(nominal, (nominal∗0.016666)2)
- so ±5% for three σ in each side of the Gaussian.

The Monte Carlo model ran 50 times. Such executions used simulation time 1500 seconds, fixed step
0.05 seconds, the data presented in Table 1 and the controller defined by Eq. (18) and (3): SDRE+H∞ controller
(R = 1 and Q = 1). Fig. 2 shows the simulation results, which are in accordance with Section 2.

6 Conclusion

The major contribution of the current paper is the extension of SDRE with H∞ using exactly three AREs
to find the sub-optimal controller, whereas the literature suggests the γ-iteration in each step in order to solve the
general H∞ problem [4]. Finally, the disturbances are locally attenuated by γ in each step.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.
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Figure 2. Simulation results for parametric uncertainty of SDRE Gibbs with H∞.
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