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Abstract. Panel Flutter is an aeroelastic instability of plates and shells of aerospace vehicles. The phenomena have
recently grown of interest as the increased efforts to make supersonic and hypersonic flight viable in the upper lay-
ers of the atmosphere. Many results are available in the literature using customized programs to study panel flutter
with non-linear structural and aerodynamics models. In this work, the third-order Piston Theory is used in the su-
personic panel flutter analysis and an evaluation of the NASTRAN capabilities. Later, the mesh convergence study
and, subsequentially, the flutter analysis of a metallic and a composite laminated plate is performed. The obtained
results show a good agreement with the literature and, therefore, demonstrate the capability of the methodology
for the cases developed in this work.
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1 Introduction

Panel Flutter is an aeroelastic instability that brings great challenges and interest in supersonic and hypersonic
flight. This instability, which occurs in thin plates and shells of aerospace vehicles, is dynamic and auto-exited
by the interaction between elastic, aerodynamic, and inertial forces that generates and keeps the phenomenon. At
first, the displacement amplitude of the panel grows exponentially in time, however, the amplitude is frequently
limited by the structural non-linearities. This phenomenon is being identified in several aerospace vehicles [1].

This self-excited instability has been extensively studied for decades and involves a system of linear or non-
linear differential equations (depending on the approach). Thus, due to the difficulty of obtaining analytical so-
lutions to model the phenomenon with different boundary conditions, the researchers changed the continuous
problem into a discrete problem. Firstly, it was employed methods such as Rayleigh-Ritz and Galerkin Method,
and later they was discretized with the finite element method (FEM). And, for the study and aeroelastic analysis,
the problem was divided into aerodynamic and structural, linear and non-linear, models.

In the previous work by Santos and Pegado [2], an aerodynamic mesh generation and post-processing tool
were developed for the aeroelastic flutter analysis in Nastran. In this article a study of the capabilities of MSC.Nastran
for aeroelastic modeling and flutter analysis is made. Subsequentially, the mesh convergence analysis is made, fol-
lowed by a novel analysis of the panel flutter in composite laminated plates, using the aerodynamic third-order
Piston Theory. The results obtained are discussed and compared with references from the literature in the follow-
ing sections.

Nastran has a long development in the aerospace sector since the opening of the original code by the NASA
[3], and active use and development. Recent research was made in incorporating Nastran non-linear capabilities in
the aeroelastic solutions for flutter [4], and aeroelastic nonlinear trim [5].

This subject still is being debated and researched by the scientific community, with both the use of plates and
shells of composites structures [6] [7], and the numerical methods used in his analysis [8] [9].

2 Nastran Capabilities

The analysis of aeroelastic stability in the MSC.Nastran is divided into three main modelling components:
the aerodynamic model; the interpolation between the structural and aerodynamic elements; and the aeroelastic
solution method.
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2.1 Aerodynamic Modeling

The MSC.Nastran has seven methods for obtaining aerodynamic matrices: The Doublet-Lattice Method
(DLM); the ZONA51 or Harmonic Gradient Method (HGM); the Constant Pressure Method (CPM); the DLM
with wing-fuselage interference; the Mach Box Method (MBM); the Strip Theory; and the Piston Theory. All
methods support non-stationary flow, differing about the applied aerodynamic theory [10, p. 17].

A summary of the main characteristics of the supersonic methods are shown in Table 1, describing which
aerodynamic theory was used, which utilized discretization method, and in which Mach number regime the method
fits [11].

Table 1. Resume of the aerodynamic modeling techniques.

Element Method Aerodynamic Theory Discretization Mach Range

CAERO1 HGM Acceleration Potential Boxes 1.1 < M < 3.0

CAERO1 CPM Acceleration Potential Boxes 1.1 < M < 3.0

CAERO3 MBM Velocity Potential Boxes 1.2 < M < 3.0

CAERO5 Piston Theory 3rd Order Piston Theory Strips 2.5 < M < 7.0

The potential aerodynamic theories, as all lifting line theories, do not take into account the thickness of the
aerodynamic profile, which may induce some modeling errors since the thickness has an effect of reducing the
flutter speed [11, p. 331]. This does not occur in the Piston Theory method, which allows the correction of
thickness.

The Boxes discretization is arranged as a planar grid of rectangular or triangular elements, that has aerody-
namic interaction between the boxes and multiple elements, except on MBM, that only has interaction within the
element surface. In counter part, the Strips discretization uses coplanar spanwise strips, that has no aerodynamic
interaction between each strip, or between multiple elements.

Two specific differences are notable in the implementation: the CPM method does not provide the use of
triangular elements; and the MBM method requires the user to define the geometry of the aerodynamic surface to
then compute the aerodynamic mesh.

MSC.Nastran allows the modeling of control surfaces, corrections for sweep angle, compressibility, symme-
try, among other properties. Such possibilities will not be discussed as they are outside the scope of this work.

There are also restrictions of geometric nature: every aerodynamic element must be aligned with the wind
axis (x-axis of the aerodynamic coordinate system), which leads to some difficulties in modeling, for example,
the incidence of wings and angle of attack (AoA), creating the need for aerodynamic correction matrices; and in
Strip discretization methods, the element’s chord line must remain rigid, that is, without deformations along its
chord line; on CAERO1 elements is desirable that the chord of each box is less than 0.08V/f , being f the greatest
frequency of interest and V the lowest velocity of interest.

Regarding the numerical implementation of the methods, it is notable that the DLM and HGM methods need
to compute the inverse of the aerodynamic influence coefficients matrix (AIC). Since it is not directly computed,
a matrix decomposition and substitution process is needed to obtain it. In the other methods, there are direct
solutions for A, and no need for inverting matrix techniques, which reduces the computational cost of the analysis
[12, p. 45-57].

As final remarks, the aerodynamic Piston Theory is most suitable for the Panel Flutter analysis at high Mach
numbers, since there is better agreement than the MBM [12, p. 68-74], and the modeling is computationally less
expensive than the HGM that requires the use of two additional aerodynamic elements side by side with the main
panel, so the Mach cone does not interfere on the panel region [13].

The downsize of using the Piston Theory is the need of parallel strip elements and the use of beam splines for
each element, increasing the number of NASTRAN cards needed. This downsize is diminished with pre-prossesing
tools such as the method developed by Santos and Pegado [2], tools like the pyNastran package by Doyle [14] or
commercial CAE (Computer-Aided Engineering) tools.

2.2 Aero-Structure Interpolation

To obtain the coupled aerodynamic and structural matrices, it is necessary to interpolate nodal displacements
and nodal forces between the aerodynamic and structural elements. For this purpose, the MSC.Nastran provides
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five interpolation methods, totaling ten solution options. However, we can cluster two groups of options that are
most relevant to the panel flutter problem: The Surface Splines; and the Linear Splines.

The Surface Spline is based on the theory of flat plates, obtaining a function of two variables to model the
forces and displacements, ideal for low aspect-ratio models. The Linear Splines are based on beam theory, ideal
for high aspect-ratio models.

2.3 Aeroelastic Solution Methods

MSC.Nastran provides six methods of aeroelastic solution for flutter: the American K-method; the KE-
method; the English PK-method; the PKNL-method; the PKS-method; and the PKNLS method. A summary of
the characteristics of each method is shown in Table 2.

Table 2. Resumo de caracterı́sticas dos métodos de solução aeroelástica.

Method Description Input Output

K Classic American iterative method Sets of M , k and ρ V , g and f .

KE K-method with eigenvalue solution only Sets of M , k and ρ V , g and f .

PK Classic British iterative method. Combinations of V , M and ρ V , γ and f .

PKS PK-method derived. ”Sweeps” around k values Combinations of V , M and ρ V , γ and f .

PKNL PK-method derived Sets of V , M and ρ V , γ and f .

PKNLS PKS-method derived Sets of V , M and ρ V , γ and f .

In the PK derived methods, there is the direct input of the velocities, which is preferable to the type K derived
methods, which requires a process of ordering the eigenvalue solution and computation the velocities. In the no-
loop (or non-iterative) methods (i.e. NL methods), there is no possibility of iteration error due to improper loop
iteration. And, according to Rodden and Johnson [13], the damping parameter γ in PK type methods is more
physically significant than the g parameter in type K methods.

All the PK derived methods should yield the same overall result if configured properly. The K derived
methods should agree with the PK’s results just on the critical values. The use of which is a choice of preference
on how the inputs and outputs are handled.

3 Procedures

The analysis developed in this work was carried out with the strip discretization of the Third-Order Piston
Theory (CAERO5), with parallel elements, using the PK-method, and interpolation with the structure by Beam
Splines.

It was used the code previous developed by Santos and Pegado [2], now using the pyNastran package, and
adding the capability to analyze panel flutter with CAERO1 elements and surface interpolation (SPLINE1) for
comparative results.

3.1 Mesh Convergence Study

For the mesh convergence study, it was adopted a well-known model in the panel flutter literature, a simply
supported rectangular plate, of dimensions: 300mm of length (a), 300mm of width (b), and 1,5 mm of thickness
(t). The material adopted was aluminum.

A Mach number (M ) of 3 was adopted, reference density at sea level (ISA), and reference chord equal to
the length of the plate. It was used a speed range between 822 m/s and 1066 m/s, which, given a Mach value,
corresponds to the maximum and minimum speed of sound within the standard atmosphere.

The material properties used in the analysis were: modulus of elasticity (E) of 71.7 GPa; shear modulus (G)
of 26.9 GPa; Poisson’s ratio (ν) of 0.33; and density (ρm) of 2.81 g/cm3. For comparative purposes, the values of
the two parameters were computed: the dimensionless dynamic pressure (λ), given by
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λ =
2q̄a3

βD
, (1)

where q̄ is the dynamic pressure, and β is the dimensionless value given by

β =
√
M2 − 1, (2)

and D is the flexural rigidity of the plate given by

D =
Et3

12(1− ν2)
; (3)

and the densities ratio by the Mach number (µ/M ) , where the densities ratio (µ) is given by

µ =
ρaa

ρmt
, (4)

where ρa is the undisturbed air density.
The first two theoretical vibration frequencies for the plate were also calculated analytically using the classic

thin plate theory.
For the initial mesh size, 10x10 aerodynamic and structural elements were adopted, based on the HA145HA

model. N multiples of this mesh were then analyzed.
It is also possible to analyze configurations in which the aerodynamic and structural mesh sizes are not the

same. However, it falls into some issues.
In the case where the aerodynamic mesh is smaller than the structural one, more than two structural nodes

will belong to the region of the aerodynamic elements, in the same y coordinate. If all nodes were selected, it
would have the development of a singular matrix, which makes the solution unfeasible.

An alternative would be to use values greater than zero for the parameter Dz of displacement attachment,
which means that the interpolation does not necessarily go through all designated points, acting like springs were
attached to the nodes. However, this alternative violates the rigid chord hypothesis of the piston theory and leads
to unsatisfactory results.

Also, if only a portion of the nodes were selected, there would be a loss of physical meaning, since the
displacement of the reminiscent nodes would not imply a change in the aerodynamic nodes.

For the case in which the aerodynamic mesh is larger than the structural one, there is a limitation of it being
twice the structural mesh size. This is given the fact that in any other configuration there would be aerodynamic
panels without corresponding structural nodes, or ambiguous relations. Even if they were connected to the adjacent
structural nodes, it would not improve the quality of the model since their displacements would be equal to those
of the neighbor panels.

In cases of refinement of the aerodynamic mesh longitudinally (i.e. y-direction), there is no improvement in
the result, since that this Piston Theory is discretized in strips, and there is no aerodynamic interaction between
them. Besides, for square plates, the use of non-symmetric structural mesh sizes, that is, a different number of
elements in the longitudinal and lateral directions, is not appropriate since it can produce errors in the solution of
the modal analysis.

The Table 3 show the values of critical dimensionless dynamic pressure (λc), estimated degrees of freedom
of the model (DOF), and the first two computed vibration frequencies.

The errors compared with the literature are shown in Table 4. The parameters βa/b = 2.83 and µ/M =
0.0291 were used for interpolating the values of Hedgepeth [15] and Pegado [16], respectively. The analytical
values of the frequencies are f1 = 80.88 Hz and f2 = 202.20 Hz.

Satisfactory results were obtained with the 20x20 mesh in the mesh convergence analysis, with an error of
less than 1 % to the reference value of Pegado [16]. For the values found by Hedgepeth [15, Table 2] the error is
less than 5 %.

For meshes with larger numbers of elements, there was relatively little accuracy gain, while there was a
significant increase in the number of degrees of freedom and consequently an increase in computational cost.
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Table 3. Mesh convergence study results.

Mesh Size λc DOF f1 (Hz) f2 (Hz)

10x10 524.34 606 79.80 198.50

20x20 518.67 2406 80.48 200.92

30x30 517.81 5406 80.64 201.49

40x40 517.07 9606 80.69 201.70

Table 4. Mesh convergence study comparative results.

Mesh Size
Error

λc Hedgepeth [15] λc Pegado [16] f1 f2

10x10 5.67 % 1.78 % −1.34 % −1.83 %

20x20 4.53 % 0.68 % −0.50 % −0.64 %

30x30 4.36 % 0.52 % −0.30 % −0.35 %

40x40 4.21 % 0.37 % −0.24 % −0.25 %

It is possible to infer that there is a correlation between the precision of the frequencies of the first modes of
vibration with the precision of the λc value. That is expected, since, the coupling of the first two modes generates
the most critical flutter condition, and therefore, the precision with which the first modes are represented in the
FEM model directly impacts the result.

Therefore, the use of a 20x20 mesh was found to be the most suitable, as it provides good accuracy with a
relatively low computational cost. It can be suggested that in configurations where a 6= b, or asymmetry exists,
other mesh values should be used (e.g. keeping the aspect ratio of the element adequate), but that a minimum of
20 elements be kept in each dimension.

3.2 Laminated Composite Plate Analysis

The model adopted was of the same geometry, boundary conditions, and flow properties as the convergence
study model, besides a value of M = 2 and the appropriate speed range. The material used for the composite
laminate was Glass-Epoxy (GFRP) with properties described in Table 5. The layers were arranged according to
the methodology described by Sawyer [17], as in Table 6. The orientation angle (θ) for the laminate layers ranges
from 0 to 90 with a step of 10. The choices of material properties and layering of the layers were arbitrarily chosen
for comparison with the reference methodology.

Table 5. GFRP mechanical properties.

E1 (GPa) E2 (GPa) G12 (GPa) ν ρm (g/cm3)

54 18 7.2 0.3 2.6

4 Results & Discussions

Using the 20x20 mesh, the analysis was performed, obtaining the values of

λ∗ =
2q̄a3

βD11
(5)
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Table 6. Ply sheets configuration.

Sheet Orientation (◦) Thickness (mm)

1 θ 0.5

2 −θ 0.5

3 −θ 0.5

4 θ 0.5

as a function of θ. Then it was compared with the result obtained by Sawyer [17], as shown in Figure 1. The
parameter D11 is similar to the previously used, however, as the flexural rigidity of the plate becomes a matrix,
due to the nature of the composite material, the parameter D11 is used with θ = 0◦ as a reference value. The value
of D11 can be easily computed in most software that supports laminate analysis.

Figure 1. Values of critical dimensionless dynamic pressure as function of ply sheets orientation.

The methodology applied to the composite panel problem agrees to the reference results, observing the
same trend and with an error of less than 5 %, however, the results converge from above, which indicates a non-
conservative trend of the model, already been reported by [13].

5 Conclusion

In this work, the aeroelastic stability analysis with the FEM and the third-order Piston Theory of a laminated
composite plate was performed. A study of the NASTRAN capabilities was made, indicating the benefits and
downsides of each modeling solution. The desired mesh value was obtained from the mesh convergence study.
And, finally, the obtained results agreed to those found in the literature, however, all cases were shown to be
non-conservative.

As demonstrated by the applicability of the methodology, it is possible to analyze geometrically similar
structures, with different materials (e.g. composites), and adjacent structures (e.g. reinforcers), without modeling
difficulties. However, the analysis in cases of non-flat geometry (e.g. curved panels, shells) may lead to other
problems and requires more development of the methodology.
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Future works may implement the use of NASTRAN’s geometric non-linear solution (i.e. large deformations),
heat transference analysis, aeroservoelastic analysis, and the use in optimization problems for aeroelastic tailoring.
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