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Abstract. This paper presents a modeling approach using lumped element multibody systems to describe aeroe-
lastic dynamics of aircraft. The model is shown to describe geometric nonlinearities arising from large structural
displacements and oscillations such as that of a very flexible wing bending under aerodynamic loads. The pre-
sented approach is applied to a Goland’s wing to determine the flutter speed resulting from coupling the multibody
structure to a quasi-steady aerodynamic model. Flutter velocities are comparable to those obtained using modal
representations for structural dynamics. Finally, the modeling appoach is shown to be scalable, parametrized and
modular, all of which could make it valuable in iterative environments such as during conceptual design phases of
very flexible aircraft.
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1 Introduction

Energy efficiency is a decision driver during aircraft design because key performance stats, total life cycle
cost and environmental footprint benefit from it. New airframe designs explore weight reduction measures (such
as the use of composite materials) and concepts of increased aerodynamic efficiency (such as very high aspect ratio
wings) which lead to more flexible aircraft structures.

Increased flexibility reduces structural frequencies, with structural modes approaching flight mechanics modes
and demanding use of integrated analyses to capture the resulting behavior. Patil and Hodges [1] demonstrate this
for a high-altitude, long-endurance (HALE) flying wing, where the deformed trim shapes also influence flight
stability and control. Linearity assumptions loose validity in such cases.

Multibody systems (MBSs) are an alternative to model flexible aircraft. They can describe both flight and
structural dynamics and generate good results when coupled to CFD models, as demonstrated in research such as
by Krüger and Spieck [2]. Cavagna et al. [3] emphasize that a MBS can model servo-systems, controls, freeplay,
friction and nonlinear constitutive laws in a single framework. Furthermore, a MBS can be used to model non-
conventional aircraft configurations such as the freely folding wingtip of the AlbatrossONE described by Wilson
et al. [4] or tilting rotors on V/STOL aircraft and can handle all kinds of kinematic constraints (such as cargo
sliding on rails during airdrops).

Dynamics of structures in a MBS are commonly represented by natural frequencies and mode shapes, relying
on geometric linearity assumptions. The present work explores capabilities and limitations of a lumped element
approach to describe structural dynamics which can be applicable when modeling slender structures well-described
by bending and twisting motion, such as high aspect ratio wings. Capability to cope with geometric nonlinearity
is a function of discretization. The approach could prove valuable in iterative environments because it is fully
parametric and does not require preprocessing.

The following sections will first assess the quality of a lumped element multibody beam by comparing static
deformed shapes and dynamics to benchmarks. Last, the multibody beam model will be coupled to a quasi-steady
aerodynamic model to obtain the flutter speed of Goland’s wing.
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2 Multibody System Description

The multibody model used in this work describes a beam undergoing torsion and bending (both in-plane
and out-of-plane). Figure 1 depicts the arrangement of rigid bodies and joints. Additional joints (such as transla-
tion joints to model spanwise extension) could be introduced, but system Degrees of Freedom (DoFs) should be
restricted to the minimum amount viable since each new joint adds new states to the system.

Constrained extremity
(attached to ground)

1 DoF torsion joint

1 DoF in-plane bending joint

1 DoF out-of-plane bending joint

Unconstrained extremity
(attached to inboard neighbour

Figure 1. Layout of the multibody wing, built of rigid elements connected by joints.

Challenges will arise if the beam was constrained somewhere else except on its root extremity (such as
depicted in Fig. 4) since it is unable to respond to spanwise forces by changes in length. The fixed length also
means that an imaginary line conecting adjacent joints is comparable to the neutral axis of real beams, along which
no longitudinal strain exists. Figure 1 also assumes the center of twist to be located on the neutral axis.

Rigid bodies have mass and inertia properties. A beam built of n elements thus requires defining n masses
and inertias. The Center of Mass is most often not positioned on the neutral axis, which also implies that pure
bending or torsion oscillations do not exist: both are coupled by the imbalance.

Finally, structural rigidity and damping are modeled by applying moments to joints. Selecting joint angles as
system states is an elegant solution because moments acting on a certain joint become a function of position and
speed of the very joint. A different selection of system states would result in distinct expressions for joint moments
and would also lead to Equations of Motion (EoMs) of different shape. Symbolic EoMs were obtained using
Kane’s Method (Kane and Levinson [5]) implementation of SymPy (Meurer et al. [6]) and evaluated numerically
with the use of PyDy (Gede et al. [7]).

3 Structural Model Validation

The model’s performance was assessed by comparing outputs to results presented by Brown [8]. Demonstra-
tions were split into static and dynamic load cases which gradually increase in complexity. This section tries to
demonstrate that large displacement dynamics of slender structures are described adequately by lumped elements.

All beams used by Brown are symmetric, which means that CoMs are positioned along the neutral axis when
building the MBS. Torsion and bending consequently uncouple and most examples are 2D (motion is constrained
to the xz-plane of Fig. 2). In such cases unused joints can be eliminated to reduce computational cost.

3.1 Static Load Cases

Four aspects need to be thought of when formulating any multibody model: kinematics, rigidity, damping
and inertia. Static load cases are valuable for validation because influence of damping and inertia are non-existent.
Consequently, they allow assessing how good kinematic and rigidity assumptions are.

Figure 2 displays a cantilever beam of constant cross section with a tip force F(t) acting on it. The force
will be kept constant first, generating a static defomed beam shape. Tip displacement magnitude will increase
gradually, resulting in load cases which cannot be solved using geometric linearity assumptions.

z

x

F(t)

1 m

Figure 2. Cantilever beam with concentrated force applied to tip.
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The Euler-Bernoulli beam theory taught in engineering textbooks such as Hibbeler [9] formulates displace-
ment as a function of beam loading (w(x), measured in [N/m]), where E is the material’s Young’s modulus, I is
the beam’s area moment of inertia about the neutral axis (Iy when using the coordinate system of Fig. 2) and v is
the resulting displacement:

d2

dx2

(
EI

d2v

dx2

)
= w(x). (1)

This is an approximation itself best used for slender bodies displaying infinitesimal displacement. Finding
the multibody joint stiffness which would result in equal tip displacement as Eq. 1 would lead to a system behaving
similarly at small loads and capable of factoring in geometric non-linearity under high loads. Doing so results in
the following expression, where n is the number of elements in the MBS and L is the beam’s length:

kjoint =
3EI

L

n∑
i=1

i2

n2
[Nm/rad]. (2)

The expression is applicable to solve any load case as long as EI remains constant and joints are regularly
distributed (first joint positioned at the root, same distancing between following joints along the beam). It needs to
be reworked if any of the conditions is not met and it could happen that each joint has its own value kjoint.

Equation 2 shows that rigidity must increase as joint numbers increase, which is a challenge for dynamic load
cases due to high state derivatives, requiring small integration steps. This limits the use of lumped element MBSs
to reasonable amounts of bodies. Similarly, introduction of translation joints to model spanwise beam extension
would introduce modes of very high natural frequency, further stiffening the EoMs.

Brown’s cantilever beam of Fig. 2 has a flexural rigidity EI = 50 [Nm2] and length L = 1 [m]. Four
multibody beams were built to compare output by varying the number of elements: n = 3, 5, 10 and 100. Figure 3
displays beam tip deflection as a function of tip load:
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Figure 3. Beam tip position along X and Z axes as a function of vertical load.

Figure 3 shows that all multibody beams generate good results for small loads, but that many rigid elements
are necessary to capture geometric non-linearity as loads increase. All beams display the same slope dztip/dF at
F = 0 [N ] because this was the selection criteria of kjoint. Furthermore the slope predicted by the Euler-Bernoulli
beam theory is close to Brown’s slope because the studied beam is slender.

The same methodology to find joint rigidity can be used when solving much more complex structural prob-
lems. Figure 4 displays a cantilever beam with an additional constraint: a pin, represented by the black dot, fixes
the position of the beam center. The structure is free to rotate around the pin. A possible representation as a
MBS could have the beam’s center constrained to move on the x-axis, but the center’s x-coordinate cannot be
constrained without adding degrees of freedom to the system because the beam is made of rigid bodies, unable to
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replicate spanwise strain. To compensate for the inaccurate translation constraint being introduced, an additional
force of arbitrary magnitude, Faux, was added to the pin, pointing away from the origin.

500 N

200 N

x y

z

Faux

Figure 4. Overconstrained 3D beam with out-of-plane tip force.

The 3D beam has following properties: EIy = 39.80 [Nm2],EIz = 1037.2 [Nm2] andGJ = 37.31 [Nm2],
where G is the shear modulus of rigidity and J the polar moment of inertia of area. The ratio Iz/Iy = 26.06 is not
large, which means that in-plane bending of the beam must be accounted for.

Joint rigidity in bending and lead-lag was calculated using Eq. 2 with n = 100 elements. Torsional stiffness
was chosen such that a torque at the beam tip generates the same angular displacement as it would on a shaft with
the same GJ product. Results are presented in Fig. 5 for 3 values of Faux.
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Figure 5. Beam centerline as seen from −z and +y directions.

A multibody beam can handle three-dimensional load cases, but model structure and constraints must be
chosen carefully. In this example, where the beam is unable to replicate spanwise strain due to the lack of a
translation joint, Faux was calibrated to obtain shapes similar to Brown’s.

3.2 Dynamic Response

A possible approach to choose rigidity and kinematic constraints when building a multibody beam was out-
lined by now. Inertia paramaters (mass, products of inertia, moments of inertia) still need to be selected for each
body and should have values consistent with the beam portion they represent. Example: describing a beam of
constant density and constant cross section with 5 rigid bodies means that each rigid body should have one fifth of
the beam’s mass. Structural damping can be added but was considered non-existent.

Modeling efforts presented in this work obtain EoMs which can be integrated to obtain the system’s dynamic
response but can also be used to extract the system’s eigenvalues by linearizing around an equilibrium point.
Eigenvalues are a synthesis of the system’s dynamic behavior and allow extracting natural frequencies (wn) and
damping (ζ). Dynamic systems with equal eigenvalues display equivalent frequency response.

Han et al. [10] formulate expressions to calculate natural frequencies of transversely vibrating beams using
models of varying complexity and demonstrate that for high slenderness ratios (defined by the ratio of length
of the beam to the radius of gyration of the cross section) simple models, which do not take into account shear
deformation or rotary inertia, output consistent natural frequencies. Feeding the Euler-Bernoulli model with data
for the test beam of Fig. 2 (EI = 50 [Nm2], m = 0.2 [kg], L = 1 [m]) outputs wn = 55.59 [rad/s] for the first
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bending mode, which is in agreement with Brown’s result of wn = 55.6 [rad/s].
By using the proposed multibody modeling approach, which consists in defining joint rigidity and body in-

ertia by analysis of the structure, wn is underestimated and will monotonically approach the true value as element
numbers increase. Inertia or rigidity parameters could be tuned to achieve closer values for wn, but this is undesir-
able. The lumped element approach’s main strengths are that it is parametric and does not require preprocessing
steps. Tuning parameters to obtain equivalent wn requires evaluating structural dynamics during preprocessing.
The underestimated wn, on the other hand, can be obtained if basic structural properties such as ρ (material den-
sity), E, G and beam geometry are known. Furthermore, the same strategy used to define kinematics, rigidity and
inertia can be applied to curved bodies and varying cross-sections with few changes.

Finally, the MBS estimates more than only the first structural mode. A beam of n elements will have n
eigenvalues, each representing a mode. To exemplify this, Table 1 listswn for the three first modes of an equivalent
Euler-Bernoulli beam. Values are compared to output from a multibody beam with 10 elements. As a guideline,
wn prediction quality is poor if a MBS of n elements is used to estimate a mode of order close to n.

Table 1. Natural frequencies of bending modes for the sample cantilever beam.

Structural Mode wn [rad/s], Euler-Bernoulli wn [rad/s], Multibody (n = 10)

1st 55.59 54.30

2nd 348.4 342.1

3rd 975.6 962.1

4 Aeroelastic Coupling Demonstration

The structural model developed so far is able to replicate non-linear geometric displacement and has dynamic
modes comparable to the real ones. It can be coupled to an aerodynamic model to generate aeroelastic results. A
sample problem was set up to estimate the flutter speed of a uniform cantilever wing studied by Goland [11].

4.1 Aerodynamic Model

Aerodynamic forces were calculated using the Strip Theory approach. Neighbouring sections do not influence
each other’s lift generation. The spanwise component when decomposing air velocity in the airfoil coordinate
system does not generate dynamic pressure. Calculation of lift coefficients assumes dCL/dα = 2π and uses a
quasi-steady model developed by Fung [12]:

CL =
dCL

dα

[
α+

1

U

dh

dt
+

1

U

(
3

4
c− x0

)
dα

dt

]
. (3)

In Fung’s formulation α represents the airfoil’s angular position, U the freestream velocity and h the vertical
position (measured perpendicular to U ). Fung also formulates the moment acting on the airfoil about the leading
edge:

(CM )l.e. = − cπ

8U

dα

dt
− 1

4
CL. (4)

The second term is a result of the lift force acting on the 1/4 chord point. The first term is a damping
proportional to α̇ and stabilizes the system.

4.2 Aeroelastic Results and Discussion

Haddadpour and Firouz-Abadi [13] have calculated Goland’s wing flutter speed using different quasi-steady
and unsteady aerodynamic models, one of them being Fung’s formulation. Modal representations of the 2 first
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bending and torsion modes were used to model structural dynamics. Their results provide a reference to assess if
the multibody structure generates reasonable flutter speeds when using the same aerodynamic model.

The multibody model built for this example does not have in-plane bending joints to reduce computational
cost, which does not mean that resulting dynamics are 2D in nature because combined motion of bending and
torsion joints generates complex shapes. This is equivalent to stating that the thickness to chord ratio of the airfoil
is so small that resulting structural dynamics are dominated by out-of-plane bending and torsion, which is what
Haddadpour and Firouz-Abadi have done by selecting two out-of-plane bending modes and two torsion modes.
Dynamic behavior of the aeroelastic system is well described by a root locus, tracking poles as airspeed varies.
Figure 6 displays such a root locus for a 6 element multibody wing with one aerodynamic strip per rigid body.

30 20 10 0 10
Real Axis [rad/s]

0

50

100

150

200

250

300

350

400

Im
ag

in
ar

y 
A

xi
s [

ra
d/

s]

No airspeed

1st bending mode

1st torsion mode

2nd bending mode

2nd torsion mode

3rd bending mode
Reference [9]

Figure 6. Root locus for the lumped-element multibody wing, airspeed varying from 0 to 100 [m/s].

Pole quantity of the MBS is a function of wing discretization: n elements use 2n joints (n for bending and
n for torsion), which in turn results in 2n pairs of poles. High frequencies describe the structure’s higher modes,
which in the case of Goland’s wing are not the cause of flutter and have been omitted in the plots. Haddadpour and
Firouz-Abadi have used 4 modes to represent structural dynamics, resulting in 4 pairs of poles. Figure 6 displays
the upper half of the root locus and omits poles with wn > 400 [rad/s].

Structural dynamics of the Goland wing in torsion and bending are coupled because center of mass and neutral
axis do not coincide. Poles in Fig. 6 nevertheless can be divided into primarily torsion or bending modes. This
means that rigidity changes of either torsion or bending joints move one half of the poles considerably more. The
pole of second lowest natural frequency is responsible for the flutter phenomena in Fig. 6 because its damping is
the first to become negative as air velocity increases. It is the first torsion mode, which means that excitation of the
corresponding structural mode results in large torsion of the wing and little bending. Table 2 presents data which
can be extracted from the root locus:

Table 2. Flutter of the Goland wing using quasi-steady aerodynamic models.

Structural Model Flutter Velocity [m/s] Flutter Frequency [rad/s]

Modal representation [13] 33.5 93

Multibody (6 elements) 30.8 86.7

The natural frequency of modes in Fig. 6 with no airspeed differ considerably from the reference. An incre-
ment in number of elements will monotonically increase frequencies. When using 6 elements, the first bending
mode is overestimated while the first torsion mode is underestimated. The reason for this must be understood and
constitutes a point for further work. Selection of the neutral axis as the center of twist could be an oversimplifi-
cation. The underestimated first torsion pole is the probable reason why flutter speeds obtained with the lumped
element multibody system are lower than those of Haddadpour and Firouz-Abadi.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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System poles can be calculated at any equilibrium point such as the deformed shape of a trimmed, very
flexible aircraft. Furthermore the multibody wing captures interplays between bending and torsion dynamics. To
exemplify this, the flutter speed of Goland’s wing could be increased by 1 [m/s] through a 5% reduction in bending
or a 2% increment in torsion joint stiffness. These numbers were obtained without need for preprocessing.

5 Conclusions

A multibody modeling approach is found to adequately describe high-amplitude motion of wing-like struc-
tures (high slenderness ratio, small lead-lag motion). By coupling it to a quasi-steady aerodynamic model the
multibody system can be used to find flutter speeds comparable to those obtained using mode shape representa-
tions. Preliminary results indicate that aeroelastic analyses of slender bodies could benefit from the parametric,
modular and scalable nature of lumped parameter multibody systems if geometric nonlinearity must be addressed.

Nevertheless some aspects of the present research must be explored by future work. Most of all, EoM
evaluation becomes costly at a low number of rigid bodies, impeding the use of many elements to increase accuracy.
When using many elements the modes of high wn will produce stiff equations, which could mean the system
cannot be used for simulation in the time domain. Capabilities to simulate the flight of a flexible aircraft should be
demonstrated since the example of this work used a cantilever wing. Last, the differing structural mode frequencies
for Goland’s wing must be understood. Dynamic benchmark problems where bending and torsion are coupled by
mass imbalances must be compared to output from a lumped element MBS.
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