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Abstract. The present work deals with the guidance of a pre-stabilized thrust-vectoring quadrotor, which is re-
quired to be steered from its initial condition to a given state-based wayset. To tackle this problem, we adopt a
receding horizon strategy based on a constrained nonlinear programming, whose crucial constraints are the control
mapping equation and the actuator limits. The online optimization solution is calculated using sequential quadratic
programming. The proposed method is evaluated using computer simulation, which shows its effectiveness.
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1 Introduction

In the past few years, multirotor aerial vehicles (MAVs) have been employed in an increasing number of civil-
ian applications, such as surveillance and remote sensing. For the near future, an intensive use in air transportation
and goods delivery is expected. All the cited tasks especially demand high level of safety and maneuverability,
so they can benefit from vehicles with full and redundant actuation. Such fully-actuated MAVs normally have a
large number of rotors, which, in most cases, can be vectorable in one or two degrees of freedom (DOFs). For this
reason, the control allocation of this class of vehicles deserves a particular attention.

In most of the papers devoted to the flight control of MAVs in general, the control allocation problem is solved
by minimizing the total thrust magnitude command without considering the actuator limits [1–5]. Unfortunately,
the optimal solution obtained in that way must be saturated inside an appropriate admissible set to avoid violating
the actuator limits. The references [6, 7] avoid such saturations by formulating optimal control allocation problems
that explicitly consider the actuator bounds as inequality constraints. However, it turns out that for an optimization-
based control allocation problem to be feasible, it is necessary that the stabilization control laws provide them with
admissible force and torque commands. This issue has not been investigated yet.

In particular, the present paper focus on a thrust-vectoring quadrotor vehicle in which each rotor has two
vectoring DOFs. Differently from [6, 7], this work makes a step back proposing an outer-loop guidance that guar-
antees the feasibility of the optimal control allocation under actuator limits. This guidance problem is formulated
using the receding horizon strategy based on a nonlinear constrained optimization that steers the MAV from its
initial condition to a state-based wayset. The online nonlinear optimization is solved using sequential quadratic
programming (SQP).

The remaining text is organized in the following manner: Section 2 describes the dynamics of a fully-actuated
quadrotor and defines the guidance problem; Section 3 formulates the guidance strategy as a nonlinear optimization
problem; Section 4 evaluates the proposed method using computer simulation; and Section 5 concludes the paper.

2 Problem Definition

In Subsection 2.1, a general form of the control mapping equation is presented. Subsection 2.2 describes the
closed-loop modeling of an MAV. Finally, in Subsection 2.3, the guidance problem of this article is formulated.
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2.1 Rotor Set Modeling

Consider a quadrotor and the Cartesian coordinate systems (CCSs) illustrated in Fig. 1. The four rotors of the
vehicle are identical and can be controlled to tilt in two DOFs, besides the control of spinning rate. The ground
CCS Sg , {G; x̂g, ŷg, ẑg} is fixed to the ground at a known point G. The body CCS Sb , {B; x̂b, ŷb, ẑb} is
fixed to the airframe, with the origin at its center of mass B. Related to the ith rotor, Sri , {Ri; x̂ri , ŷri , ẑri} and
Sbi , {Ri; x̂bi , ŷbi , ẑbi} have both origin at the articulation point Ri, but Sbi is fixed w.r.t. Sb, while Sri is fixed
w.r.t. rotor i. The orientation of Sri w.r.t. Sbi can be parameterized by the vectoring angles εi ∈ R+ and ηi ∈ R+

using two consecutive elementary rotations around axes 1 and 2, respectively.
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Figure 1. Schematic illustration of a quadrotor with two-DOF-vectoring rotors. In the left, it is presented a detail
for the third rotor.

The aerodynamic thrust force and reaction torque produced by the ith propeller are modeled, respectively, by

~fi = kfω2
i ẑri , (1)

~τi = (−1)i+1kτω2
i ẑri , (2)

where ωi ∈ R+ denotes the angular speed of the ith rotor, while kf , kτ ∈ R+ are aerodynamic coefficients.
Assume that ωi is bounded according to

0 ≤ ωmin ≤ ωi ≤ ωmax, (3)

where ωmin, ωmax ∈ R+ are given physical parameters.
The resulting control force ~f c and torque ~τ c produced by the rotors are given, respectively, by

~f c =

4∑
i=1

~fi, (4)

~τ c =

4∑
i=1

(~τi + ~̀
i × ~fi), (5)

where ~̀i is the (arm) vector from B to Ri.
Considering fcb, τ cb ∈ R3 as the Sb representations of ~f c and ~τ c, respectively, the control vector u ∈ R6 can

be defined as follows
u , (fcb, τ

c
b) (6)

Assume that zi ∈ R3 represents the thrust force ~fi in Sbi . Then, it can be described by

zi = kfω2
i


sin ηi

− sin εi cos ηi

cos εi cos ηi

 . (7)

Using the previous definition, Lemma 1 presents the control mapping equation in a linear form.
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Lemma 1. The control mapping can be expressed as

u = Γz (8)

where

z , (z1, z2, z3, z4) , (9)

Γ ,

 Db/b1 Db/b2 Db/b3 Db/b4

M1Db/b1 M2Db/b2 M3Db/b3 M4Db/b4

 ∈ R6×12, (10)

Mi , (−1)i+1 k
τ

kf
I3 + [`ib×] ∈ R3×3, ∀i ∈ I4, (11)

with I4 , {1, 2, 3, 4}, `ib is the Sb representation of the arm vector ~̀i and Db/bi ∈ SO(3) is the attitude matrix of
Sb w.r.t. Sbi .

Proof. Equation (8) can be immediately obtained by representing eqs. (4) – (5) in Sb and rewriting the resulting
equations into the desired matrix form.

Finally, assume that the vectoring angles εi and ηi are bounded by

εmin ≤ εi ≤ εmax, (12)

ηmin ≤ ηi ≤ ηmax, (13)

where εmin, ηmin, εmax, ηmax ∈ R+ are given physical parameters.

2.2 Closed-Loop Dynamic Modeling

The state vector x ∈ R12 and output vector y ∈ R6 of the quadrotor can be defined as

x ,
(

rb/gg ,αb/g, vb/gg ,ω
b/g
b

)
, (14)

y ,
(

rb/gg ,αb/g
)
, (15)

where rb/gg , vb/gg ∈ R3 are, respectively, the position and velocity of Sb w.r.t. Sg; αb/g , (φ, θ, ψ) is the attitude
of Sb w.r.t. Sg expressed as Euler angles 1-2-3; and ωb/gb ∈ R3 represents the angular velocity of Sb w.r.t. Sg .

Assume that m ∈ R+ is the total mass of the MAV, Jb ∈ R3×3 represents its inertia matrix w.r.t. Sb and
g ∈ R+ is the local gravity acceleration. Therefore, using the Newton-Euler equations, the translational and
rotational dynamics can be modeled in the following state-space form

ẋ = g (x) + B (x) u, (16)
y = Cx, (17)

where

g (x) ,


vb/gg

M(αb/g)ω
b/g
b

−ge3

−J−1
b

[
ω
b/g
b ×

] (
Jbω

b/g
b

)

 ,B (x) ,


03×3 03×3

03×3 03×3

1
m (Db/g)T 03×3

03×3 J−1
b

 ,C ,
[

I6 06×6

]
,

M(αb/g) ,


cosψ/cos θ −sinψ/cos θ 0

sinψ cosψ 0

−cosψtan θ sinψtan θ 1

 ,
and [ω

b/g
b ×] ∈ R3×3 is the skew-symmetric matrix of ωb/gb [8].
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For the moment, it is assumed that a stabilizing flight control law is already available and has the general
form

u = h (x, ȳ) , (18)

where ȳ ∈ R6 is a command for y and h : R12×R6 → R6 jointly describes the position and attitude control laws.
From equations (16) and (18), the closed-loop state equation is obtained as

ẋ = gc (x, ȳ) , (19)

where gc (x, ȳ) , g (x) + B (x) h (x, ȳ).

2.3 MAV Guidance Problem

Define a waysetW ⊂ R12 as a given symmetric, compact, and convex set and the corresponding waypoint
w ∈ R12 as its center. The waysetW is the input of the guidance law.

The main problem of this paper is stated below.

Problem 1. The MAV guidance problem is to design a guidance law ȳ (x,W) which steers the closed-loop system
described by (19) from the initial condition x(t0) to a given wayset W , while satisfying the control mapping
equation (8) and respecting the actuator bounds (3), (12), (13).

3 Problem Solution

By replacing the inequalities (3), (12), and (13) into equation (7), we can obtain an admissible set Z ⊂ R3

for the rotor thrust zi. In this paper, we approximate this set by a polytopic subset, which can be described by the
inequality

Λizi ≤ λi, (20)

where Λi ∈ Rp×3 and λi ∈ Rp, for p ∈ Z+, are given.
Therefore, using (9) and (20), we obtain

Λz ≤ λ, (21)

with Λ ∈ R4p×12 and λ ∈ R4p.
A discrete time model related to the closed loop dynamics in (19) can be obtained by using the zero-order

hold approach with sampling time ts ∈ R+

xk+1 = gd (xk, ȳk) , (22)

where gd : R12 × R6 → R12 is calculated by the integration of gc and xk ∈ R12, ȳk ∈ R6 are, respectively, the
state and output command on the discrete time k ∈ Z+.

The receding horizon strategy is adopted to solve Problem 1. The embedded optimization, at instant k, is
formulated as

{ȳ∗j} = arg min

N−1∑
j=0

(
‖xj+1 − w‖2 + ρ‖zj − zref‖2

)
(23)

s.t.,∀j ∈ IN x0 = xk, (24)

xj+1 = gd
(
xj , ȳj

)
, (25)

h
(
xj , ȳj

)
− Γzj = 0, (26)

Λzj − λ ≤ 0, (27)
xN ∈ W, (28)

where IN , {0, 1, . . . , N − 1}, N ∈ Z+ is the prediction horizon and ρ ∈ Z+ is a given weight related to
the actuation efforts. The sequence {ȳ∗j} represents the optimal trajectory calculated for ȳj , with j ∈ IN , and
zref ∈ R12 is the reference value for z, which is given for the quadrotor in hover condition, with non-vectored
rotors.

To solve the previous nonlinear optimization problem online, it is approximated to simpler quadratic sub-
problems, using the SQP algorithm. So, employing the receding horizon strategy, only the first optimal input of the
sequence {ȳ∗j} is applied to the system, i.e., ȳk = ȳ∗

0. Therefore, at the next discrete time, a new state measurement
xk+1 is obtained and the whole process is repeated.
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4 Simulation Results

The proposed method is illustrated for a x-shaped fully-actuated quadrotor via simulation, which was per-
formed in MATLAB, using the Euler integrator, with time step of 0.001 s. The considered parameters of the vehicle
are the following: m = 2.132 kg, Jb = diag([0.043, 0.055, 0.092])kg m2, ` = 0.36 m, kf = 2.532× 10−5 kg m,
kτ = 5.997× 10−7 kg m2, ωmax = 754 rad/s, ωmin = 0, εmax = ηmax = π/2 rad and εmin = ηmin =
−π/2 rad.

The flight control of eq. (18), as done in [1], was implemented using two stabilizing control laws, respectively
for attitude and position dynamics

τ cb = Jb
[
k1

(
ᾱb/g −αb/g

)
− k2ωb/gb

]
+
[
ω
b/g
b ×

] (
Jbω

b/g
b

)
, (29)

fcg = m
[
k3

(
r̄b/gg − rb/gg

)
− k4vb/gg + ge3

]
, (30)

where k1, k2, k3, k4 ∈ R+ are design parameters and the commands ᾱb/g, r̄b/gg yield from ȳ, i.e., ȳ = (r̄b/gg , ᾱb/g).
The nonlinear optimization problem described in (23)–(28) is solved using the fmincon function with the

SQP algorithm, which is provided by the Optimization Toolbox of MATLAB. The considered parameters of the
guidance and control laws are the following: ts = 0.1 s, N = 20, ρ = 0.01, k1 = k3 = 225 s−2 and k2 = k4 =
30 s−1.

To visualize the effectiveness of the guidance strategy, two scenarios were tested: Scenario A simulates the
system with the proposed guidance, while, in Scenario B, the method is not used and the waypoint w is passed
to the flight control as a step command. In both scenarios, it is considered a position tracking mission, with the
quadrotor starting on [0, 0, 1]T and the waypoint is [1, 0, 1]T, both conditions with null attitude and velocities.

The Fig. 2 presents the quadrotor states through the time. It is worth mentioning that some states were
omitted, since they remain close to the related initial condition. One may observe, in both scenarios, that all the
states are successfully driven into the target set. In Scenario B, the quadrotor reaches the wayset much faster than
Scenario A, which is a result of the actuator constraint (27) considered in the guidance strategy.
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Figure 2. States of the quadrotor during the simulation. Related to Scenario A, the cyan lines represent the guidance
commands, while the blue ones indicate the states values. The red lines illustrate the states simulated in Scenario
B and the dashed lines represent the limits of the respective waysets.

The Fig. 3 shows the actuation variables related to the second rotor of the MAV. The other rotors have similar
behaviors and are omitted for brevity. One may observe, in Scenario B, that the upper bound of the spinning
velocity ω2 is violated. Conversely, in Scenario A, the proposed method prevents this violation and respects the
physical bounds of the actuators with large margins.

5 Conclusions

This paper proposes a receding horizon guidance that directly considers the control mapping equation and
the actuator limits. As the method yields a nonlinear optimization problem, it is approximated for solution, so one
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



Nonlinear Receding Horizon Guidance of a Thrust-Vectoring Quadrotor Under Control Allocation Constraints

0 1 2 3 4 5
-100

-90

-50

0

50

90
100

0 1 2 3 4 5
-100

-90

-50

0

50

90
100

0 1 2 3 4 5
0

500

754

1000

1500

2000

2500

0 2 4
450

500

Figure 3. Actuation variables related to the second rotor of the MAV. The blue lines illustrate the results of Scenario
A, while the red lines represent Scenario B and the dashed lines determine the bounds of the respective variables.

could expect that the approximations would induce some lack of accuracy in satisfying the constraints. However,
the simulation of a wayset tracking mission shows that the actuator bounds are strictly respected. This preliminary
result encourages to deeply investigate the properties of the method and to simulate its application to different
scenarios.
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