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Abstract. This work is concerned with the design and analysis of the attitude control law for a quadrotor aerial
vehicle, under bounded external disturbances and model uncertainties with unknown bounds. First, the vehicle
rotational kinematics and dynamics are modeled in terms of well-defined Gibbs vector and angular velocity rep-
resenting the control errors. To tackle the problem, we propose a first-order multi-input adaptive sliding mode
control strategy based on an adaptation law for the switching gain matrix. This adaptive gain matrix is proved
to converge to its maximum bound and the existence of an ideal sliding mode is guaranteed. The main contribu-
tions are: 1) the geometric dynamic modeling in SO(3) for the attitude control error using Gibbs vector; and 2)
the extension of a switching gain adaptation law originally proposed for single-input systems to a more general
multi-input formulation. The method is evaluated by numerical simulations, using IMAV-M, which is a recently
deployed open-source flight control simulator for multirotor aerial vehicles (MAVs). In an ideal scenario, without
measurement noise (or estimation errors) and small sampling time, the method shows to be effective and easy to
implement and tune.
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1 Introduction

Sliding mode control (SMC) is a popular control design approach mainly due to its simplicity and capability
to make the closed-loop system insensitive to bounded matched disturbances/uncertainties [1, 2]. In this sense, the
flight dynamics of multirotor aerial vehicles (MAVs) are in fact eligible for the use of SMC, since the kinematic
equations describing both the translation and rotation are exactly known, while the dynamic equations contain all
the uncertainties and disturbances [3]. However, SMC requires the knowledge of the disturbance bounds, which
are difficult to be evaluated for MAVs, without some conservativeness.

In this context, adaptive sliding mode control (ASMC) strategies become very appealing, since they do not
demand previous knowledge of the disturbance bounds. Instead, these methods either tune the switching gain of the
SMC using some adaptation law [4] or adopt some disturbance estimation scheme based on the equivalent control
concept [5]. In particular, the present paper is concerned with the Huang approach [4], which had its convergence
proof well revisited in [6–9]. We extend this method to a multi-input formulation that fits the MAV equations of
motion well. Then, in the light of the discussion raised in [6], we prove both convergence of our multi-input-based
adaptive gains to its maximum bound as well as the existence of an ideal sliding mode.

Adaptive SMC with switching gain adaptation has already been applied to the flight control of fixed-rotor
quadrotor MAVs [10–13]. Modirrousta and Khodabandeh [10] have propose a terminal SMC with gain adaptation
in Huang’s fashion for addressing the attitude control problem. Yang and Yan [11] have also considered an adaptive
switching gain approach, but using a fuzzy scheduling mechanism for the gain adaptation. Based on a decoupled
dynamic model of the quadrotor MAV, Nadda and Swarup [13] have applied Huang’s adaptation law to design
attitude and altitude controllers. Thanh and Hong [12] have employed the same modeling as in [13], but have
built the adaptation law on a second-order SMC strategy. Moreover, one can find many papers on flight control of
quadrotor MAVs using SMC along with either adaptive laws for estimating unknown system parameters [14–16]
or disturbance observers [17, 18].

In special, we highlight that the above-cited references on flight control of MAVs are not strictly concerned
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with the attitude geometry, i.e., they describe the attitude control error as the difference between the desired and
actual Euler angles, which has no physical meaning. In this aspect, the present work alternatively proposes to
represent the attitude control error in SO(3), as done in [3, 19, 20], but using Gibbs vector instead of Euler vector
(aka exponential map), Euler angles, or modified Rodrigues parameter (MRP), respectively. We argue that the
Gibbs vector is an appropriate and simple choice. In summary, the present paper is concerned with the design
of attitude control laws for fixed-rotor quadrotor MAVs and its main contributions are: 1) to introduce a new
geometrically consistent modeling of attitude and angular velocity control errors; and 2) to propose a multi-input
ASMC law that guarantees the existence of ideal sliding modes as well as switching gain boundedness. The
remaining text is organized as follows. Section 2 presents the MAV modeling and details the control objectives.
Section 3 develops a multi-input ASMC method for the attitude control. Section 4 evaluates the method using a
simulation example. Finally, Section 5 concludes the paper.

2 Problem Statement

Subsection 2.1 presents the rotational dynamic modeling of an MAV in SO(3). Subsection 2.2 derives the
rotational error dynamic equations using Gibbs vector. Section 2.3 states the control objective. For a more detailed
and comprehensive modeling of an arbitrary fixed-rotor MAV in SE(3), the reader is referred to [20].

2.1 Rotational Dynamics in SO(3)

Consider a ground reference Cartesian coordinate system (CCS) SG
.
= {G; x̂G, ŷG, ẑG} and a body-fixed

CCS SB
.
= {B; x̂B, ŷB, ẑB} as illustrated in Figure 1, along with a schematic representation of a quadrotor MAV.

Figure 1. Schematic illustration of a fixed-rotor quadrotor MAV along with the adopted CCSs.

The attitude kinematics of SB w.r.t. SG are described in SO(3) by

Ḋ
B/G

= −
[
Ω

B/G
B ×

]
DB/G, (1)

where Ω
B/G
B ∈ R3 and DB/G ∈ SO(3) represent the MAV angular velocity and attitude, respectively.

On the other hand, using the Euler equation, the attitude dynamics are described in SB by

ḢB + Ω
B/G
B ×HB = Tc

B + Td
B, (2)

where HB ∈ R3 is the SB representation of the MAV total angular momentum, while Tc
B ∈ R3 and Td

B ∈ R3 are
the SB representation of the control and disturbance torques, respectively. Neglecting the inertia properties of the
spinning part of the rotors, the SB representation of the total angular momentum can be expressed as

HB = JBΩ
B/G
B , (3)

where JB ∈ R3×3 is the inertia matrix of the airframe in SB.
By replacing equation (3) into (2), we can obtain the attitude dynamic equation in the desired form:

Ω̇
B/G

B = −J−1
B

[
Ω

B/G
B ×

]
JBΩ

B/G
B + J−1

B

(
Tc

B + Td
B

)
. (4)

2.2 Error Dynamics

To keep the kinematic equation of the attitude error in the usual form (1), let us define the following attitude
and angular velocity control errors, respectively:

D̃ .
= DB̄/B ∈ SO(3) and Ω̃

.
= Ω

B̄/B

B̄
∈ R3, (5)

where B̄ refers to the CCS representing the desired (or commanded) orientation for SB.

Lemma 1. The attitude and angular velocity control errors can be put in the form

D̃ = D̄B/G
(

DB/G
)T

, (6)

Ω̃ = Ω̄
B/G
B − D̃Ω

B/G
B , (7)
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where D̄B/G ∈ SO(3) and Ω̄
B/G
B ∈ R3 represent the attitude and angular velocity commands, respectively.

Proof. Equations (6) and (7) can be immediately obtained by manipulating the control errors defined in equation
(5). �

From the definition (5), the error kinematics are described in the same form as the full kinematics are repre-
sented in equation (1), i.e.,

˙̃D = −
[
Ω̃×

]
D̃. (8)

For the design of control laws, we would rather adopt a three-dimensional parameterization of D̃. Here, the
adopted three-dimensional attitude representation is the Gibbs vector [21]:

g̃ .
= ε̃ tan(ϑ̃/2), (9)

where ε̃ ∈ R3 and ϑ̃ ∈ R are the principal Euler axis and angle, respectively, corresponding to D̃. The direct
relation between g̃ and D̃ is

D̃ =

(
1− g̃Tg̃

)
I3 + 2g̃g̃T − 2 [g̃×]

1 + g̃Tg̃
, (10)

and its inverse is

g̃ =
1

1 + tr D̃


D̃23 − D̃32

D̃31 − D̃13

D̃12 − D̃21

 , (11)

with D̃ij denoting the element of the ith row and jth column of D̃.
From equation (9), we see that the Gibbs vector has singularities at the angles ϑ̃ = (2i + 1)π rad, ∀i ∈

Z. However, since this attitude parameterization is used here to represent the attitude control error (not the full
attitude), assuming that the control law to be designed will be effective, the absolute value of ϑ̃ will keep much
smaller than π and singularities will not be reached in practice.

Now, using the Gibbs vector parameterization, the control error kinematics are described by

˙̃g =
1

2

(
g̃g̃T + [g̃×] + I3

)
Ω̃. (12)

On the other hand, the following lemma gives the dynamic equation of the quadrotor MAV in terms of the
attitude and angular velocity control errors (5).

Lemma 2. The dynamic equation (4) can be expressed as

˙̃Ω = D̃J−1
B

[
D̃

T
(
Ω̄

B/G
B − Ω̃

)
×
]

JBD̃
T
(
Ω̄

B/G
B − Ω̃

)
+
[
Ω̃×

]
Ω̄

B/G
B + ˙̄Ω

B/G
B − D̃J−1

B

(
Tc

B + Td
B

)
. (13)

Proof. Equation (13) can be obtained by replacing (6)–(8) into (4). �

2.3 Control Objective

Let us put the error kinematic and dynamic equations (12)–(13) into the simpler form

ẋ1 = f1(x1, x2), (14)
ẋ2 = f2(x1, x1) + B(x2)u + B(x2)d, (15)

by defining x1
.
= g̃, x2

.
= Ω̃, B(x2)

.
= −D̃J−1

B , u .
= Tc

B, d .
= Td

B,

f1(x1, x2)
.
=

1

2

(
g̃g̃T + [g̃×] + I3

)
Ω̃,

f2(x1, x2)
.
= −B(x2)

[
Ω̌×

]
JBΩ̌ +

[
Ω̃×

]
Ω̄

B/G
B + ˙̄Ω

B/G
B ,

and Ω̌ , D̃
T
(
Ω̄

B/G
B − Ω̃

)
.
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Assume that the disturbance input d is unknown, but it is bounded according to |eT
i d| ≤ Li, i = 1, 2, 3, where

Li > 0, ∀i, are unknown parameters.
Now, define the switching variable s ∈ R3:

s .
= Cx1 + f1(x1, x2), (16)

where C ∈ R3×3 is a design parameter matrix.

Problem 1. The main problem of the paper is to design a feedback attitude control law for u so as to make s
converge to zero in finite time, without any previous knowledge about Li, i = 1, 2, 3.

To better interpret the objective of Problem 1, make s = 0 in (16) to obtain ẋ1 = −Cx1, which represents the
reduced system dynamics during the sliding mode. Clearly, if C is chosen as a positive-definite diagonal matrix,
the equilibrium point x1 = 0 is asymptotically/exponentially stable. Therefore, we can affirm that a control law
u which attracts s to zero in finite time ultimately makes x1 → 0 asymptotically. Further, from (16), x2 → 0
asymptotically as well. Summarily, x .

= (x1, x2) → 0 asymptotically in spite of the presence of the disturbance
input d.

3 Control Law Design

This section presents the main results. Subsection 3.1 formulates a multi-input SMC. Subsection 3.2 presents
a multi-input switching gain adaptation law.

3.1 A Multi-Input SMC Formulation

By differentiating (16) and using (14)–(15), we can obtain the dynamic equation for s (we omit the function
independent variables for simplicity):

ṡ = Cf1 +
∂f1
∂x1

f1 +
∂f1
∂x2

f2 +
∂f1
∂x2

Bu +
∂f1
∂x2

Bd. (17)

The following lemma presents a sufficient condition for s→ 0 in finite time and keep there.

Lemma 3 (Reaching Condition). The inequality

signT (s) ṡ ≤ − β√
2
, (18)

for any β ∈ R>0, is a sufficient condition for s = 0 to be a finite-time stable equilibrium point of system (17).

Proof. Let us adopt the Lyapunov candidate function

V =
1

2

(
3∑

i=1

|si|

)2

. (19)

By deriving (19) w.r.t. time along the trajectories of s (governed by (17)), one can show that the finite-time
convergence condition given in [22], i.e., V̇ ≤ −βV 1/2, can be converted into condition (18). �

The following proposition gives a multi-input SMC law which makes s→ 0 in finite time, supposing, for the
moment, that the disturbance bounds Li, for i = 1, 2, 3, are known.

Proposition 1 (Multi-input SMC law). The control law

u = −
(
∂f1
∂x2

B
)−1(

Cf1 +
∂f1
∂x1

f1 +
∂f1
∂x2

f2 + Ksign(s)
)
, (20)

where K ∈ R3×3 is a constant diagonal matrix satisfying

tr(K) = β/
√

2 +

3∑
i=1

Li1
T
3

∣∣∣∣ ∂f1
∂x2

B
∣∣∣∣ ei, (21)
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with any β ∈ R>0, guarantees a first-order sliding mode of system (14)–(15) on the switching surface s = 0, in a
(finite) reaching time tr satisfying

tr ≤
√

2

β

3∑
i=1

|eT
i s(0)|. (22)

Proof. First, we need to replace the SMC law (20) into (17) to obtain:

ṡ = −Ksign(s) +
∂f1
∂x2

Bd. (23)

Now, by replacing (23) into the reaching condition (18), one can show that for ensuring s → 0 in finite time, it
suffices choosing K according to (21). On the other hand, by integrating V̇ ≤ −βV 1/2 from t = 0 to an arbitrary
t and using (19), one can obtain the reaching time bound given in (22), thus completing the proof. �

3.2 Switching Gain Adaptation

Now, let us modify the control law (20) to obtain the following ideal adaptive sliding mode control (ASMC)
law:

u = −
(
∂f1
∂x2

B
)−1(

Cf1 +
∂f1
∂x1

f1 +
∂f1
∂x2

f2 + Ka(t)sign(s)
)
, (24)

with the switching gain Ka(t), still diagonal, evolving along time according to the adaptation law

K̇a(t) = Γ|s|, K(0) = K0 � 0, (25)

where |s| .= [|s1| |s2| |s3|]T, s is as defined in (16), K0 is a given initial condition, and Γ ∈ R3×3 is a given
diagonal positive constant matrix; Γ can be chosen so as to adjust the adaptation rate for each diagonal element of
Ka(t) independently.

The following lemma shows that the adaptive switching gain Ka(t) is upper-bounded by an unknown constant
diagonal matrix K̄ ∈ R3×3.

Lemma 4. Consider the switching function dynamics (17) under the ASMC law (24)–(25). It holds that there exists
a positive-definite diagonal matrix K̄ such that K̄−K(t) is positive semi-definite ∀t ≥ 0.

Proof. From (25), we see that K̇a(t) � 0, ∀t ≥ 0. Therefore, Ka(t) is a non-decreasing function of t. From (25)
again, we can also see that Ka(t) stops increasing definitely just when s reaches 0 definitely (to not scape again).
It turns out that the value of Ka(t) at the time t∗ when s reaches 0 definitely is the bound K̄ itself, thus concluding
the proof. �

Now, let us replace K by Ka(t) in (23) and put the resulting equation into the reaching condition (18) to
obtain:

tr(Ka(t)) ≥ β√
2

+ signT(s)
∂f1
∂x2

Bd, (26)

for any β ∈ R>0. It means that whenever condition (26) is satisfied, s experiences a converging motion towards the
sliding surface s = 0. In particular, the time when (26) becomes true for the last time is the one denoted by t∗ in the
proof of Lemma 4. Following the interpretation of Zhu and Khayati [6], we could refer to t∗ as the compensating
time.

Proposition 2. Consider the switching function dynamics (17) under the ASMC law (24)–(25). There exists a finite
reaching time tar such that s(t) = 0, ∀t ≥ tar . Further, it holds that tar satisfies

tar ≤ t∗ +

√
2

β

3∑
i=1

|eT
i s(t∗)|. (27)

Proof. The proof can be constructed in a similar way as the proof of Theorem 4.3 in [6]. �
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4 Computational Example

The simulation is based on the open-source simulator IMAV-M1, which is coded in MATLAB/Octave script
in a modular fashion; for this paper, we have generated a specific fork named IMAV-M-ASMC12, where the
proposed ASMC method is implemented on a X-shaped quadrotor MAV of 1 kg, with inertia matrix JB =
diag(0.015, 0.015, 0.02) kgm2. For simplicity, the true attitude and angular velocity are used as feedback in
place of the respective estimates. The MAV is guided to follow the position-heading waypoints (0, 0, 1, π/6),
(5, 0, 1, π/6), and (5, 5, 1, 0) (in SI units). The attitude controller is parameterized with C = diag(2, 2, 2),
K0 = diag(0.1, 0.1, 0.1), and Γ = diag(0.01, 0.01, 0.01). The results are presented in Figure 2. It shows a
smooth position trajectory following the waypoints, the control torque commands, the adaptive gains, and the atti-
tude trajectories along the time. In the attitude plots, we see a fast and precise convergence of the true variables to
the respective commands. On the other hand, the torque command is a high-frequency switching signal; it is worth
noting that, even considering non-modeled actuator dynamics and using a reasonable sampling time (of 0.01 s),
the chattering (in the attitude plots) is not too relevant. Finally, we can see that the switching gains keep growing,
since s cannot converge exactly to zero in a non-ideal scenario. Further analysis will appear in a future paper,
considering sensor noise and more challenging flight scenarios.

 

Figure 2. Simulation results.

5 Conclusions

The paper solved the attitude control problem for quadrotor MAVs using an ideal adaptive multi-input SMC
with adaptive switching gain. Sliding mode existence and gain boundedness are both ensured. A simulation
example showed the effectiveness and promising performance of the method. In a future work, the proposed
controller will be extended to a real ASMC design and will be fully evaluated using simulation and experiments.

ACKNOWLEDGMENT

The authors would like to thank the Sao Paulo Research Foundation (FAPESP), for the financial support
(2019/05334-0). The first author is grateful to EMBRAER and ITA, for the doctorate scholarship under the
Academic-Industrial Graduate Program (DAI). The second author is grateful for the support of CNPq/Brazil
(302637/2018-4).

Authorship statement. This section is mandatory and should be positioned immediately before the References
section. The text should be exactly as follows: The authors hereby confirm that they are the sole liable persons
responsible for the authorship of this work, and that all material that has been herein included as part of the present
paper is either the property (and authorship) of the authors, or has the permission of the owners to be included here.

1See https://github.com/daviasantos/IMAV-M.
2It is available here: https://github.com/daviasantos/IMAVMASMC1.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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