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Abstract. The Frequency-based Damage Detection Method using FRFs (Frequency Response Functions)
in a high-frequency range can identify a structural failure of about 0.16% and 0.34% of the total mass.
These results demonstrate the effectiveness and reliability of the method to track the problem in its
initial stage. The Robust Singular Value Decomposition algorithm (RSVD) is employed in Frequency-
based Damage Detection Method to find out a damaged subset from a set composed by reference and
damaged data. Although effective, this procedure has some drawbacks, it is time consuming and the
method performance is linked to optimum singular value basis reduction. The main objective of this
work is to select an algorithm to overcome these less acceptable features. In order to achieve this goal
there are a short review of the main methods employed in data classification, parameter extraction. The
selection criteria is to pick out those that present simple algorithms and that are based on metric distances.
From those review the Multivariate Energy Distance Correlation was selected. Using experimental data
this Energy statistic method are compared with Robust Singular Value Decomposition (RSVD).

Keywords:Frequency-based Damage Detection Method, Multivariate Distance Correlation, Energy Dis-
tance, Bootstrap

1 Introduction

The main objective of this work is to find out a procedure to measure the distance between two FRF
data sets or two matrices. The idea is using a metric distance that ensures a unique value to each one in
sense that one could compare them. Being effective the procedures must satisfy all metric axioms.

A recent proposed procedure is the Energy Covariance and Correlation Distance introduced by
Székely, Rizzo and Bakirov [4]. Energy Distance is a distance between probability distributions (Rizzo[d]).
It applies to random vectors in arbitrary dimensions, and the methodology requires only the mild as-
sumption of finite first moments (Rizzo [5]). This method has been made a significant impact and there
are many routines for different areas as reported in [5] mainly, but not only, in times series analysis where
identify temporal dependence structure on time series is an important issue (Zhou [6], Pitsillou [7]).

For this work, beyond simplicity, the main aspect of the Energy Correlation Distance is the property
of the coefficients R2(X,Y’). For variables X and Y with finite first moments (finite mean), all possibilities
for R2(X,Y) lies on the range 0 < R2(X,Y) < 1. R2(X,Y) = O only if X and Y are linearly independent
and R2(X,Y) = 1 only if there is a linear dependence between X and Y. This is important because
R2(X,Y) = 0 does not hold for linear independent sets for general metric spaces , only for separable
ones (Lyons [2]). The Energy Distance R2(X,Y) satisfies all axioms of a metric distance, (Székely
[4]), and are valid not only for Euclidean metric although it is used in following revision. The authors
also highlights that Distance correlation can be applied as an index of dependence, (Székely [4]), more
important, without requiring distributional assumptions (Székely [8]).
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2 The Energy Distances

As stated the algorithm Coefficient for Covariance Correlation Distances are very simple. From

1
classical Euclidean distance matrix a;; defined as a;; = |@; — x;] = [Yh_; (wir — 251)?] ?, where 2, € RP,
zp C X™P. Similarly y; C Y™? defines a Euclidean distance matrix b;; = |y; — y;|. The bi-centered
matrix A;; is computed from Euclidean matrix, A;; = a;; — a; — a; — a, where

1 n 1 n 1 n
@i =@, =— Y aix aj=a;=—-y ap; a=— > ai; @)

n k=1 k=1 i,j=1

B;; is computed using similar procedure B;; = b;; — b; — l_)j — b. The Distance Covariance, V2(X,Y),
and the Distance Correlation coefficient R2(X,Y) between X,, , and Y, , is defined as[4]:

V3(X,Y
5 = n ) it Vo (X, X) X Vo (Y,Y) #0
V2(X,Y)= — }: A;jBij and R2(X,Y) V2 (X, X)V2(Y,Y) (2)
e = 0 it Vn(X,X) x Vn(Y,Y) =0

0<V3X,Y)<ooand 0 <R2(X,Y) <1 both are equal 0 only if X and Y are independent. Also
the empirical statistical coefficients V2(X,Y) and R2(X,Y) converge almost surely to the population
coefficients: n — 0o, lim, 00 V2(X,Y) = V2(X,Y) and lim, . R3(X,Y) — R*(X,Y).

The Székely paper [9] work starts with the observation that the bias of the RZ(X,Y) statistic
increases with dimension. For X, , and Y, , when p,q — oo then R, (X,Y) — 1 and V,,(X,Y) — .
Székely [9] propose the bias corrected Aj ; and B}, matrices using the previous defined matrices a; ;, b; ;,
Ai’j and Bl’J

(3

The Unbiased Distance Covariance statistics V;'(X,Y) and Unbiased Distance Correlation coefficient
R (X,Y) are

n

V;(X7Y):ﬁ {Z A:(] l]_

i,j=1

Va(X,Y)
Vi(X, XV (YY)

1B ] and RL(X,Y) = (4)

if the Distance Covariances V! (X, X) =0 or V! (Y,Y) = 0 then R} (X,Y) = 0. Also the empirical statis-
tical coefficients V}(X,Y) and R} (X,Y’) converge almost surely to the population coefficients V*(X,Y)
and R*(X,Y) as n — oc.

2.1 Bootstrapping

The Bootstrap main objective is to perform a empirical test to estimate some statistic inferences
and not to verify the underlying distribution from sample. Usually this procedure is done by permutation
or resampling tests. Since Efron initial work [I0], there has been developing a solid theoretical Bootstrap
basis (Chernick and LaBudde [11]). The method is also very simple to program and there are many
implementations (Davison and Kuonen [I2]) in many software packages as in R software (Canty and
Ripley [13)]).

Bootstrap will be used to stablish the R* and R? Confidence Limits, CL. The Basic Confidence
Limits is computed by (R§ — (17 (R+1)(1 o)~ RE) s R = (T(pi1)ya) — R6))- Ry is the Distance Correlation
from original set. The T(R+l)(1—a)7 (R+1)( ) is the percentile interval for the basic Bootstrap confidence
limits (1 — 2«), usually 95%. The percentile are taken from sorted Bootstrap statistic T(*l)7 . 7T(*R) ,
R is the Bootstrap iterations number. T* is the Distance Correlation Bootstrap computed, (Rg — T*)
is named bias. The Percentile Confidence Limits uses the percentile limits only and is computed using
( (R+1) (1—a) +1)

The Normal Con dence L1m1t should be used only if the statistic T* follows a Gaussian distribution:
(R§—(T*—=v(T*)2(1—a) —R§) » Ro—(T*—v(T™)z(a)—R§)). The therm v(T™) is the variance of Bootstrap
statistic T)%, and z(,) is the percentile of normal distribution.
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3 Results and Analysis

The first results presented are from an artificial dataset created to test the routine in a different
situation that it is intended to use. Independent sets, linearly dependent sets and partial dependent sets
are used from data designed to produce these results. Following, the experimental data from a metallic
laminate beam are presented. These data was previously published Duarte [14] and this set was used
because there are a poor RSVD failure identification for the presented frequency range.

3.1 Comparing Designed Sets for Algorithm Testing

Comparing Orthogonal Sets. In this section there are results comparing two datasets one from a
matrix X, , with n = 270 rows and p = 10 columns where each column is a random vector generated by
a mean 1 exponential distribution. The second matrix Y, ,, has equal dimensions and each column was a
vector generated by random Gaussian distribution mean 1 and standard error sd=2, A/(1,2). Generating
independent sets is only necessary to use dissimilar distributions sets, but different distributions types
underlining these independent sets are also employed.

As the Energy Distance is intended at first to compare data distribution, for this two sets or two
matrices, X, , and Y,, ,, the Energy Distance should be zero as there are not only different distributions
but also different distributions types. In Fig. the Bootstrap results for the statistic R%(X,Y), in
the left-rand side the histogram and at right side the quantile plot comparing the Bootstrap quantile
distribution versus quantile for normal distribution. This right side plot Qrz X Qn(0,1) shows that the
Bootstrap distribution for coefficient deviates from normal at the beginning and is remarkable far from
normal at the end quartiles.
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Figure 1. Energy Method, Bootstrap density histogram for 7* = R}, and quantile plot Qr+ X Qn(o,1)
for R distribution versus normal distribution.

On Tab. [1f the Bootstrap statistic inference for R2 and R}, coefficients. For each one there are the
result for the original data, T,, where T, represents R2 or R}, the Bootstrap bias related to initial result
are (T, —T™), the standard error, the Bootstrap Confidence Limit computed using different procedures.

Table 1. Bootstrap statistic computed from orthogonal dataset, Ty, bias, standard error, sd, two-sided
95% Confidence Limits, CL, for coefficients R?(X,Y) and R} (X,Y). n = 270 rows and p = 10.

Coef. To bias (To — T™*) sd normal Conf. L. basic Conf. L. percentile Conf. L.
R2 0.1907321621 -0.0239433488  0.014130006  ( 0.1870, 0.2424 )  ( 0.1904, 0.2437 ) (0.1377, 0.1910 )
Ry -0.0008710860 0.0005302428 0.003839384  (-0.0089, 0.0061 )  (-0.0094, 0.0053 ) (-0.0071, 0.0077 )

As stated the expected result for the correlation coefficients are zero. The 95% two-sided Confidence
Limit indicates a better performance for Unbiased R} compared to original R2 coefficient. For Unbiased
R;, the confidence interval is very small and includes zero indicating independence between the X and
Y sets. The Confidence Limits for R? are very large and do not include zero.

The poor performance for the R? coefficient was not expected. The theoretical interval for R? is

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
Foz do Iguag¢u/PR, Brazil, November 16-19, 2020



Using Multivariate Energy Distance on Frequency-based Damage Detection

0 < R2 <1 so the Confidence Limit interval could include zero, at least numerically in its inferior limit
or nearest it, and this expected behaviour did not happen. As the vector dimension n is not small and p
is not large it is a not expected result.

Comparing Linearly Dependent Sets. A vector U; = N(1,2) has a random Gaussian distribution,
mean 1 and standard error sd=2. The reference set X = [X3,...,X,)] is generated by adding to this Us
vector a random normal vector with a small variance (N(0.0,0.1) ) acting as a noise, X; = Us +MN;(0,0.1).
The set Y to be tested follows the similar procedure, Y; = Us+N;(0,0.1), Y = [Y1,...,Y,]. The expected
Energy Distances should be close to 1 or linearly dependent.
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Figure 2. Energy Method, Bootstrap density histogram for 7* = R}, and quantile plot Q= X Qno,1)
for R} distribution versus normal distribution.

The histograms and quantile plot Q7+ X Qn(o,1) for R, coefficient are in Fig. Fig., the Confidence
Limits on Tab.. All results for linear dependent X and Y are close to 1 and with tiny differences
between coefficients. From R} (X,Y") results it is possible to conclude that the algorithm presents results
as predicted by the the Energy Distance theory. In the following sections only the R (X,Y) Energy
Unbiased Distance is employed, the coefficient R2 does not presented a good performance for linear
independent case.

Table 2. Bootstrap statistic computed from original linear dependent dataset, Tj, bias, two-sided 95%
Confidence Limits, for coefficients R2(X,Y) and R%(X,Y). n = 270 rows and p = 10

Dist. Coef. To bias (To —T*) basic Conf. Limit  percentile Conf. Limit
R2 0.9995981  -0.0003411565 (10.9997, 1.0002 ) (10.9990, 0.9995 )
Ry, 0.9991843  -0.0006920689  ( 0.9995, 1.0005 ) (10.9979, 0.9989 )

Comparing Partial Dependent Datasets for 0 < R} < 1. On Fig. left panel there are three
Bootstrap Density Histograms for the following Distances R (Y.Y), R%(X,Y) and R} (X, X). This
density histogram are obtained from random sets X and Y both composed by a linear combination of
a reference vector U,. This reference vector is a random normal vector Us; = A/ (1,1), mean=1 and sd=
1. The X set is a combination of U, and a random Gaussian vector N;(0.0, 0.1) (mean=0 and sd=0.1),
X; = Us + N;(0.0,0.1). The Y set is also a combination of vector Uy, Y; = U, + N;(0.5,0.25). The
dimensions used for X, , and Y}, , are n = 270 and p = 10.

On the left side of Fig.7 the first histogram is for R (Y,Y") Distance Coefficient, the largest data
dispersion histogram in blue color, the latest and tallest is for distance coefficient R} (X, X'), green color.
Between them there is the R (X,Y) Distance Coefficient comparing X and Y sets, salmon color. The
R (X,Y) Distance Coefficient appears between R} (Y,Y) and R} (X, X) because the reference vector
N(1,1) is the significant structure behind the X and Y sets, and the difference between them depends
on the standard deviation in vectors added to the base.

On the right side panel of Fig. are histograms using another datasets. There is also a random
reference set Us; = N'(2,4) common to both sets, a common random vector for X set X, = Nx(1,1) and
X; = Us + X5 +N;(1,0.5), where for X,, , n =270 and p = 10. The Y}, , is Y; = Us + Y; + E,(1.5) where
E(1.5) is the random exponential with mean (1/1.5) and Yy = Ny (—1,0.5) is a Gaussian vector.
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Density Histogram [ X=Ref +N( 0, 0.1 ), Y=Ref + N( 0.5, 0.25) ] Density Histogram [ X=Ref + Refx+ N(1,0.5) , Y=Ref + Refy+ Exp( rate= 1.7) ]
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Figure 3. Density histogram for R} (X,Y) in salmon, R} (X, X) green and R} (Y,Y) in blue color.

The R} (X,Y) Distance Coefficient behaviour in the right side of the Fig. is different from the
previous case, the R (X,Y) is not only related to the dispersion inside the sets. In this case there is a
common structure Uy vector, but there is also a different distributions present in each set, ANx(1,1) for
X and Ny (—1,0.5) for Y set. So there is a specific structure in each set and this difference is indicated
by the R} (X,Y) Distance Coefficient.

3.2 Using Energy Distance in Experimental Beam Data

The results presented in this section are obtained from Duarte [I4], the FRF dataset are from a metal
laminate beam, material characteristics, procedures and measurement details can be found in reference
[14]. The healthy structure has 60 x 1072 kg and the damaged structure is the same structure that had
an added mass with 1.2 x 10~2 kg, which represents about 2% of the structure’s mass. For the frequency
range used here, 2 to 10 kHz, the RSVD method presented poor positive failure identification.

Laminate Beam Density Histogram [ 1600 Line Resolution FRF ]
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Figure 4. Deunsity Histogram for Laminate beam, frequency range from 2 to 10 kHz (1600 line resolution
FRFs). First left salmon histogram, R} (X,Y), at center R (Y,Y) and R} (X, X), rightmost.

Beam Results for 1600 line resolution FRFs. For this resolution the reference Dataset, X, ;,
is composed by n = 401 rows and p = 20 columns, each column is a FRF. The matrix to be tested,
Y., has same dimensions. Using Unbiased Distance Correlation R} (X,Y), R: (X, X) and R} (Y,Y)
the Bootstrap results are on Fig., and on Tab.. On Fig. one can see that there is a significant
difference between the reference set, X, and the set to be tested, Y. On Fig. and Tab. the Confidence
Limits for Unbiased Energy Distance R} (X,Y’) did not overlap the Confidence Limits for R (X, X) or
R:(Y,Y). As the X and Y data are taken from the same position on structure so there is a clear failure
in Y dataset if X is the reference. The Bootstrap R} (X,Y’) Distance between sets indicates that there
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Laminate Beam Density Histogram [ 3200 Line Resolution FRF ] Laminate Beam Density Histogram [ 6400 Line Resolution FRF ]
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Figure 5. Density Histogram for Laminate beam 2 to 10 kHz (3200 and 6400 line resolution FRFs). In
both plots the histogram sequence is: R} (X,Y), R:(Y,Y) and R (X, X).

is significant structures that are not common.

Table 3. Beam 1600 line resolution FRF Bootstrap statistic, Ty, bias, basic and percentile two-sided 95%
Confidence Limits, CL, for coefficients R} (X,Y), R (X, X) and R%(Y,Y).

Dist. Coef. To bias (To —T™*) basic Conf. Lim percentile Conf. Lim
R:(X,Y) 0.8307100  -0.0008191982  (0.8288357 0.8362371)  ( 0.8288357 0.8362371)
Ri(X,X) 0.9992636  -0.0005576273 (0.9986100 1.0033463)  ( 0.9951810 0.9999172)
R:(Y)Y) 0.9608105  -0.0012700205  (0.9457125 0.9792952) (0.9423257 0.9759085)

It is possible to implement a Bootstrap hypothesis testing, but there is a so significant gap between

Ri(X,Y)and R (X, X)or R} (X,Y) and R} (Y,Y) Confidence Limits that there is no sense to implement
it. This gap between Bootstrap Distances Confidence Limits indicates that there is relevant statistical
differences between X and Y sets that can not explained only by the data dispersion present in the
measurement.
Beam Distances for 3200 and 6400 line resolution FRFs. There are results for datasets X, ,
and Y, 4 using 3200 line resolution FRF where n = 801 rows and for 6400 line resolution FRF dataset
this with n = 1601 rows. Using the Unbiased Distance Correlation R} (X,Y), R} (X, X) and R} (Y,Y)
the Bootstrap results are on Fig.7 and on Tab..

Table 4. Beam 3200 and 6400 line resolution FRF Bootstrap statistic. 7Tg, bias, basic and percentile
two-sided 95% Confidence Limits, for coefficients R} (X,Y), R (X,X) and R: (Y, Y).

Dist. Coef. To bias (To —T™*) basic Conf. Lim percentile CL
RE(X,Y)(3200) 08318232  -0.0007293904  (0.8308066 0.8351339)  (0.8285124 0.8328397)
RE(X, X)(3200) (0.9994893  -0.0003399808  (0.9990535 1.0025498)  (0.9964288 0.9999251)
RE(Y,Y)(3200) 09633568  -0.0012471797  (0.9484269 0.9818788)  (0.9448347 0.9782866)
RE(X,Y)(6400) 08324080  -0.0008629327  (0.8314283 0.8363740)  (0.8284420 0.8333877)
RE(X,X)(6400) 09989766  -0.0003745203  (0.9980177 1.0044378)  (.9935153 0.9999354)
Rx(Y,Y)(6400)  (0.9743316  -0.0023613615  (0.9576356 0.9994949)  (0.9491683 0.9910276)

In these results there are no significant differences from the previous data for 1600 line resolution
FRF case, there are very close results for all Bootstrap statistics. The only remarkable difference could be
seen on the upper Confidence Limit Distance R (Y,Y) for Y, , 6400 line resolution set where the upper
Bootstrap scattering goes toward 1 and match with X, ,, upper Confidence Limit for Distance R} (X, X),
right side panel on Fig.. This could be interpreted as a improvement of the Y set measurement with
the FRF resolution. Despite that, there is no significant change on Confidence Limit for Distance between
Y, 4 and X, , datasets, R} (X,Y), or its Bootstrap mean value. Its an empirical confirmation that the
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structural change in measurement and not the measurement dispel that indicates the damage.

4 Closing Remarks

The clear and undeniable statistical results for the experimental data using Unbiased Correlation
Energy Distance R} multivariate procedure is the contribution of this work. The procedure is simple,
fast and precise. There is no identification problem using R} on available data. There is a clear difference
between the health and damaged datasets. There is no dependence on the operator skills to identify oper-
ational parameters. So There is no identifications problems found in RSVD method that are consequence
of the correct choice of significant singular values. This procedure will improve the Frequency-based
Damage Detection method reliability and will allow to create new procedures.

It is important to highlight some important and practical aspects of the outlined method. The
Unbiased Energy Distance satisfies all axioms of a metric distance so it can be used as a direct tool to
compare different signals. There is no restriction regarding data distribution type, using Bootstrap there
is no concern about distributional assumptions to determine the statistic inference for Correlation or
Covariance Distance. Determining distribution type and appropriate procedures are time consuming in
data analysis. So it can be extended to other Structure Health Monitoring methods where comparing
multivariate data is important.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible
for the authorship of this work, and that all material that has been herein included as part of the present
paper is either the property (and authorship) of the authors, or has the permission of the owners to be
included here.
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