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Abstract. This paper investigated the dynamic behavior a cracked simple supported pipe conveying fluid due to 

the application of an additional roving mass along the structure. First, a difference finite model of a simple 

supported Euler-Bernoulli beam conveying fluid experimental was developed to obtain natural frequencies of 

damped modal analysis. The results are compared to literature. In addition, the frequency shift technique is applied 

for an undamaged simple support pipe conveying fluid. Last, it was identified a cracked simple supported pipe 

using a frequency shift technique for different fluid velocity. 

Keywords: Tube conveying fluid, crack detection, frequency shift. 

1  Introduction 

Previous damage detection in pipelines is extremally important to safe and satisfactory maintenance [1]. The fluid 

flowing inside a pipe acts as a tangential follower force. This gyroscopic fluid force modifies its dynamic 

characteristic [2–4].  

Commonly, visual inspections are realized to investigate the presence of cracks but in some cases, this 

technique is unsuccessful, for instance, when the damage is in a place that is too hard to see. Thusly, many non-

destructive methods have been applied to identification and localization of damages that prejudice the health of 

the structure. Generally, these techniques compare the intact and damaged response of the structures, which 

requires the identification of both beforehand. In most of the time, the intact response is impossibly obtained. 

Hence, researchers have been testing some techniques that use just the damaged response, such as Zhong et al. [5]. 

In the last decades, studies of identification of damage in structures using an auxiliary mass have been done, such 

as Zhong; Oyadiji [6], Cardoso et al. [7]. This technique consists of the application of an additional mass along 

the length of structure to magnify the effect of the discontinuities.  

This paper investigated the dynamic behavior a cracked simple supported pipe conveying fluid due to the 

application of an additional roving mass along the structure. First, a difference finite model of a simple supported 

Euler-Bernoulli beam conveying fluid experimental was developed to obtain natural frequencies of damped modal 

analysis. The results are compared to literature. In addition, the frequency shift technique [5] is applied for an 
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undamaged simple support pipe conveying fluid. Last, it was identified a cracked simple supported pipe using a 

frequency shift technique for different fluid velocity. 

2  Roving Mass Technique on a Cracked Tube Conveying Fluid 

The system is composed by on a cracked simply supported cracked simple supported pipe conveying fluid, as 

shown in Figure 1, with 𝐿 as total length (geometry), 𝑈 as fluid flow velocity 𝑈, 𝑚𝑓 as fluid mass per unit length 

(fluid), 𝐸𝐼 as flexural rigidity, 𝑚 as structure mass per unit length, 𝑥𝑐 as crack position, 𝑥𝑎 and 𝑚𝑎 as position and 

mass of roving mass, respectively. Using the additional mass [5, 6], a roving mass 𝑚𝑎 is positioned along of beam 

producing the frequency-shift graph (Figure 2). 

 

Figure 1. Geometry of a cracked simple supported pipe conveying fluid with a roving mass 𝑚𝑎. 

 

(a) (b) 

Figure 2. Fundamental frequency as function of additional mass 𝑚𝑎 of a free-free beam with several mass 

damage ratio 𝑚𝑐 𝑚𝐿⁄ (a), and its second derivative for mass damage ratio 𝑚𝑐 𝑚𝐿⁄ = 5%, (b) [7]. 

2.1 Mathematic Description of Tube Conveying Fluid 

The linear formulation of pipe conveying fluid is a classical fluid-structure formulation well known until 

60s [8, 9]. Païdoussis [10, 11] is a popular reference describing this equation of motion of tube conveying fluid 

by force balance. Considering incompressible fluid, pressures are measured in relation to atmospheric pressure 

𝑝𝑜. and small displacements (𝑑𝑠 = 𝑑𝑥 referring to the equilibrium position), the fluid-structure dynamic 

equilibrium is done by: 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4
+ 𝑚𝑓𝑈2

𝜕2𝑤

𝜕𝑥2
+ 2𝑚𝑓𝑈

𝜕2𝑤

𝜕𝑥𝜕𝑡
+ [(𝑚 + 𝑚𝑓) + 𝑚𝑎𝛿(𝑥 − 𝑥𝑐)]

𝜕2𝑤

𝜕𝑡2
= 0 (1) 
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2.2 Dimensionless Equation of Motion 

The representation of the fundamental equations that govern the phenomenon in terms of dimensionless variables 

has been in common use [11]. And the dimensional approach makes possible a wide analysis due to the reduced 

parameters quantities to vary. Therefore, looking for dimensioning of Eq. (1) to apply the knowledge and 

techniques present in the literature, the following dimensioning terms are accepted 𝜉 = 𝑥 𝐿⁄ ;  𝜂 = 𝑤 𝐿⁄ . By chain 

rule, the second derivative is obtained by, 

𝜕2𝑤

𝜕𝑥2
=

𝜕

𝜕𝜉
(

𝜕𝑤

𝜕𝑥
) 

𝜕𝜉

𝜕𝑥
     ∴      

𝜕2𝑤

𝜕𝑥2
=

1

𝐿
  

𝜕2𝜂

𝜕𝜉2
 (2) 

And, then the others differential operators can be written as follows: 

𝜕4𝑤

𝜕𝑥4
=

1

𝐿3
  

𝜕4𝜂

𝜕𝜉4
,      

𝜕𝑤

𝜕𝑥
=  𝐿 

𝜕𝜂

𝜕𝑡
,    &   

𝜕2𝑤

𝜕𝑡2
= 𝐿

𝜕2𝜂

𝜕𝑡2
 (3) 

Replacing the dimensionless differential operator in (1), with some algebraic manipulations, it has: 

𝜕4𝜂

𝜕𝜉4
+ 𝑢2

𝜕2𝜂

𝜕𝜉2
+ 2𝛽

1

2
 𝑢

𝜕2𝜂

𝜕𝜉𝜕𝜏
+ [1 + 𝛼 𝛿 (𝜉 −

𝑥𝑐

𝐿
)]

𝜕2𝜂

𝜕𝜏2
= 0 (4) 

𝑤here, the dimensionless expression is: 

𝜉 =
𝑥

𝐿
, 𝜂 =

𝑤

𝐿
, 𝜏 = (

𝐸𝐼

𝑚𝑓 + 𝑚
)

1

2 𝑡

𝐿2
, 𝑢 = (

𝑚𝑓

𝐸𝐼
)

1

2
𝑈𝐿, 𝛽 =

𝑚𝑓

𝑚𝑓 + 𝑚
 

 (5) 

The present problem resumed by two dimensionless numbers: mass ratio 𝛽 (0 < 𝛽 < 1) and reduced flow velocity 

𝑢. If Ω is the dimensionless frequency of movement related to circular frequency (𝜔), the equation is 

represented by: 

Ω = (
𝑀 + 𝑚

𝐸𝐼
)

1

2

𝜔𝐿2 (6) 

The dimensionless frequency Ω has a complex nature, characterizing the stability of the system, as a function of 

the imaginary point of Ω(Im (Ω)), i.e, Im (Ω) being positive, an unstable spiral behavior is established; negative; 

stable spiral; and null, center. 

3  Numerical Solution by Finite Difference 

The discrete equation of motion of tube conveying fluid (4) using central finite difference technique in the space 

domain (𝜉) is done. If there are cross derivate terms of 𝜂 in relation to dimensionless space (𝜉) and time (𝜏), this 

relation are used, for example, 

𝜕2𝜂

𝜕𝜉𝜕𝜏
=

𝜕

𝜕𝜉
[
𝜕𝜂

𝜕𝜏
] =

𝜕𝜂̇

𝜕𝜉
=

1

2∆𝜉
{𝜂̇𝑖+1 − 𝜂̇𝑖−1} (7) 

Then, the equation of tube conveying fluid (4) take this finite difference discretized expression: 

1

∆𝜉4
{𝜂𝑖+2 − 4𝜂𝑖+1 + 6𝜂1 − 4𝜂𝑖−1 + 𝜂𝑖−2} +

𝑢2

Δ𝜉2
{𝜂𝑖+1 − 2𝜂𝑖 + 𝜂𝑖−1} 

+
2𝛽1 2⁄ 𝑢

2∆𝜉
{𝜂̇𝑖+1 − 𝜂̇𝑖−1} + 𝜂̈1 = 0 

(8) 

Or, reordering the displacement, velocity, and acceleration, 

𝜂⃗̈𝑖 + {
2𝛽1 2⁄ 𝑢

2∆𝜉
} 𝜂⃗̇𝑖 + {𝑢2

1

∆𝜉2
𝛿𝜉

2 +
1

∆𝜉4
𝛿𝜉

4} 𝜂𝑖 = 0 (9) 

where, 𝛿𝜉
𝑗
 is the central operator of finite differences in relation to space (𝜉) and operator order 𝑗 (𝑗 = 1 – first 

derivate, 𝑗 = 2 – second derivate, as follow), whose representation is done by: 

𝛿𝜉 … = (… )+1 − (… )−1 , (10) 
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𝛿𝜉
2 … = 𝛿𝜉(𝛿𝜉 … ) = (… )+1 − 2(… )0 + (… )−1 , (11) 

and, 

𝛿𝜉
4 … = 𝛿𝜉

2(𝛿𝜉
2 … ) = (… )+2 − 4(… )+1 + 6(… )0 − 4(… )−1 + (… )−2 . (12) 

For example, by applying the 4th order finite difference operator to 𝜂, 

𝛿𝜉
4𝜂𝑖 = {𝜂𝑖+2 − 4𝜂𝑖+1 + 6𝜂𝑖 − 4𝜂𝑖−1 + 𝜂𝑖+2} . (13) 

Presenting Eq. (35) in a matrix form, the discretized equation of motion of the tube conducting fluid is: 

𝜂⃗̈ + [𝐶]𝜂⃗̇ + [𝐾]𝜂⃗̇ = 0⃗⃗ . (14) 

where, (𝜂)𝑇 = {𝜂1 𝜂2 𝜂3 … 𝜂𝑛 } is the displacement vector of structural discretized nodes; [𝐾] = {(𝑢2 ∆𝜉2⁄ ) 𝛿𝜉
2 +

(1 ∆𝜉4⁄ ) 𝛿𝜉
4 + (𝛾 2∆𝜉⁄ ) 𝛿𝜉} is discretized stiffness matrix; [𝐶] = {(2𝛽1 2⁄ 𝑢 2∆𝜉⁄ ) 𝛿𝜉

2} is discretized damping 

matrix. Davoudi & Öchsner [12] and Silva & Soares [13] presents more details about finite difference technique. 

3.1 Damped Eigensystem Solution 

Assuming the tube conveying fluid solution as 𝜂 = 𝑁𝑜𝑒𝑖Ω𝜏, the equation of motion (14) takes following form: 

{−Ω2 [I] + iΩ [C] + [K]} 𝑁⃗⃗⃗𝑜 = 0⃗⃗ . (15) 

To solve the damped eigenproblem above, the variable transformation 𝜗 =  𝜂̇ is carried out. Then (15) take this 

form, considering the identity [𝐼]𝜗 ⃗⃗⃗⃗ = 𝜂̇ ⃗⃗⃗ ⃗ , this expression taken this form: 

[
[0] [𝐼]

−[𝐾] −[𝐶]
] [

𝜂
𝜗

] = [
𝜂̇

𝜗̇
] . (16) 

Then the matrix expression of the equation of motion of the tube conduction fluid. 

In this format, the problem can be solved using integration methods in the time domain. The best adjusted 

techniques for the solution Eq. (46) are the 1st order differential equation solvers to solve initial value problems 

(PVI). 

Admitting to a solution of the type below, in the frequency domain, 

𝑧 = [
𝜂
𝜉] = [

𝑁0

Ξ0
] 𝑒𝑖Ω𝜏 . (17) 

Then, replacing (17) into state-space equation (16): 

[
[0] [𝐼]

−[𝐾] −[𝐶]
] [

𝜂
𝜉] = 𝜆 [

𝜂
𝜉] . (18) 

It’s a typical damped eigenproblem whose solution take form of complex frequencies 𝜆𝑖 = 𝚤Ωi = 𝚤𝜔𝑛,𝑖 ± 𝜉𝑖, 

where, 𝜔𝑛,𝑖 and 𝜉𝑖 is the natural frequency and damping of 𝑖-th modal mode of this problem. For solution, it is 

recommended to reduce the matrix A in the “upper” form of Hessemberg and use the QR method to determine the 

eigenvalues. 

4  Cracked Description  

Yoon & Son [1] propose a stiffness damage as a torsional spring, Figure 3. For beam-like structures, this crack model 

approach (or discrete spring model) present a good agreement for the two first modal frequencies and for small damage 

ratio [14]. Then, supposing the boundary conditions of a cracked simply supported pipe for transversal deflection, 

bending moment, shear force and angular slope at crack (𝜉𝑐 = 𝑥𝑐 𝐿⁄ ), respectively, are done by: 

𝜂+(𝜉𝑐) = 𝜂−(𝜉𝑐),
𝜕2𝜂+(𝜉𝑐)

𝜕𝜉2
=

𝜕2𝜂−(𝜉𝑐)

𝜕𝜉2
,

𝜕3𝜂+(𝜉𝑐)

𝜕𝜉3
=

𝜕3𝜂−(𝜉𝑐)

𝜕𝜉3
,

𝜕𝜂+(𝜉𝑐)

𝜕𝜉
−

𝜕𝜂−(𝜉𝑐)

𝜕𝜉
=

𝐸𝐼

𝐾𝑅

𝜕2𝜂+(𝜉𝑐)

𝜕𝜉2
 

(19) 
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Figure 3. Stiffness damage modeled by a torsional spring [7]. 

where, the indices + and – represent the positions on right and left of crack position, and 𝐾𝑅 is discrete torsional spring 

representing the open crack. For Mehrjoo, Khaji and Ghafory-Ashtiany [15], the equivalent spring stiffness for a single-

sided open crack is expressed by: 

𝐾𝑅 =
1

72𝜋

𝐸𝑤ℎ2

𝑓(𝜅)
 (20) 

 

where crack-depth ratio 𝜅 = 𝑑/ℎ with crack depth 𝑑, beam depth ℎ, and beam width 𝑤; 𝐸 is the Young modulus; and 

𝑓(𝜅) = 0.6384 𝜂2 − 1.0350 𝜂3 + 3.7201 𝜂4 − 5.1773 𝜂5 + 7.5530 𝜂6 − 7.3320 𝜂7 + 2.4909 𝜂8 (21) 

 

4.1 Finite Difference Cracked Modelling 

Krishnan, George and Malathi [16] discuss about a consistent finite difference approach from a buckling load of 

stepped simply supported beam. This numerical approach to describe the bending displacement of two separate 

beam using four auxiliar fictitious nodes and four discretized boundary conditions, as described in Figure 4 :  

(a) 

(b) 

Figure 4. Finite difference approaches to model an open crack in a beam: (a) inconsistent continuous modeling, 

and (b) fictitious node approach of Krishnan George and Malathi [16]). 

This approach can be used to describe a crack with hypothesis of torsional spring. Other approximation is 

approximation at crack point as a variation of a one line on linear system. This inconsistent approach did a 

substitution of intact bending stiffness by cracked one 𝐸𝐼𝑑  at crack node 𝜂𝑖. This simple (but inconsistent approach) 

is analyzed here. 
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5  Numerical Results 

This preliminary work presents a validation of a simple supported tube conveying fluid (section 5.1) and an 

example of damage detection by a roving mass  𝑚𝑎 for a constant flow fluid 𝑈 (section 5.2). 

5.1 Validation – Simple Supported Tube Conveying Fluid 

To validate the present modeling, an example of simple supported beam is comparted with literature example 

presented by Ritto et al [17]. After convergence checked, the presented result is done with 60 nodes. The first four 

frequencies are presented (i.e., eight eigenvalues) for this analysis with fluid mass ratio 𝛽 = 0.24 and 

dimensionless flow speed 𝑢 ∈ [0,12]. The stability chart is presented. Respectively, Figure 5 and Figure 6 show 

the real part and imaginary part of dimensionless frequency 𝜆 (= 𝚤Ω). This results present a good agreement with 

Ritto et al [17]. 

(a) (b) 

Figure 5. Comparation between real part of eigenvalue 𝜆 as function of  

dimensionless flow speed 𝑢 (𝑅𝑒(𝜆) × 𝑢): (a) Ritto et al [17], and (b) present result. 

(a) (b) 

Figure 6. Comparation between imaginary part of eigenvalue 𝜆 as function  

of dimensionless flow speed 𝑢 (𝐼𝑚 (𝜆) × 𝑢): (a) Ritto et al [17], and (b) present result. 

5.2 Cracked Modelling 

For a simple supported pipe with a mass ratio 𝛽 = 0.24 modelled using 60 nodes. An open crack, in middle span 

(𝑥𝑐 = 𝐿/2), with a bending ratio 𝛼𝑑,𝐸𝐼 = 𝐸𝐼𝑜/𝐸𝐼𝑑 = 22% was proposed to being practical. The frequency shift of 
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several roving mass 𝛼 = 𝑚𝑎 𝑚 + 𝑚𝑓⁄ = [2% 4% 8% 16% 32%] are presented in Figure 7 (first three 

added mass) and Figure 8 (last three added mass). The roving mass is responsible by a frequency discontinuity in 

frequency shift graph. It is necessary a high mass ratio to obtain a frequency increase of 1% that is difficult to be 

measured experimental.  

  

Figure 7. Frequency shift of a roving mass  simple supported tube conveying fluid (𝛽 = 0.24) with several 

roving mass ratio 𝛼: (red triangle Δ) 𝛼 = 2%, (pink plus +) 𝛼 = 4%, (cyan cross ×) 𝛼 = 8%. 

 

Figure 8. Frequency shift of a roving mass  simple supported tube conveying fluid (𝛽 = 0.24) with several 

roving mass ratio 𝛼: (blue cross ×) 𝛼 = 8%, (black triangle Δ) 𝛼 = 16%, (red plus +) 𝛼 = 32%. 

6  Conclusion 

In this paper, it was proposed a preliminary modeling of a dynamic behavior a cracked simple supported 

pipe conveying fluid due to the application of an additional roving mass along the structure. The numerical results 

are validate with literature [17]. At last, it was identified a cracked simple supported pipe using a frequency shift 
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technique for different roving mass ratio. The roving mass is responsible by a frequency discontinuity in frequency 

shift graph but an increase of 1% frequency need the use of important mass ratio. 

For the future work, a more precise model to describe the open crack in finite difference method. A more 

profound investigation are necessary to explore with results near to critical velocity, responsible for structural 

buckling (or divergence instability). And, at last, a study of breath cracks to precisely describe the nonlinear effects 

of defects in tube conveying fluids. 
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