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yva.2019@aluno.unila.edu.br, ivan.araujo@unila.edu.br
2Pontificia Universidad Javeriana
Carrera 7 No 40-62 – Bogotá D.C., Colombia
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Abstract.
Due to advances and automation in operational modal analysis (OMA) methods, it is possible to extract

modal parameters (natural frequencies, damping ratios and vibration modes) in a quick and easy way solely from
data collected during operation. However, one of the shortcomings of these methods lies in the assessment of the
accuracy of the information obtained. In this work, the uncertainty in the identified modal data is quantified by
calculating confidence intervals using the Bootstrap technique. The modal parameters of a concrete block of a dam
are identified through the application of the SSI-COV method to acceleration measurements from a triaxial sensor
installed in the block. Then, the bootstrap technique is applied and a comparison is made between three common
methods of resampling the time series based on nonrandom as well as random block lengths.

Keywords: concrete block, modal parameters, Bootstrap

1 Introduction

The process of identifying modal parameters involves measuring and acquiring data, system identification
and the estimation of the modal parameters from the described identification system. Each of these steps is subject
to error, which causes the identified modal parameters to exhibit a degree of uncertainty. According to Reynders
et al. [1], the sources of error that lead to these uncertainties are: The finite number of data, which causes that
the covariance matrices not to be calculed exactly, non-stationary, coloured and deterministic loads, system non-
linearities, instrumentation noise and errors induced by the identification algorithm. Some of the purposes of modal
parameter identification are calibration and updating of numerical finite element models and damage detection,
then, in these cases, estimating these errors in the modal parameters is of utmost importance, either to more
accurately predict the dynamic response of the structure or to assess whether changes in a set of estimated modal
parameters are due to changes caused by damage or by these errors inherent in the identification process.

The uncertainties in modal parameters can be quantified through the approach bootstrap. This technique
consists of repeatedly sampling random datasets from the observed data and repeat the parameter estimation routine
for each individual bootstrap dataset (Majid et al. [2], Farrar et al. [3], Hastie et al. [4]). When the observed data
depend on each other as is the case of acceleration time series, resampling should be carried out through data
blocks and not through individual observations. Some of the block bootstrap methods are: Moving blocks, blocks
of blocks and stationary bootstrap. The first two methods resample blocks of observations with a nonrandom block
length, while the last one uses a random block length and hence, has a slightly more complicated structure. In
this article, the uncertainties in the modal parameters (frequencies and damping ratios) of a concrete block of a
hollow gravity type dam are determined through the application of the three block bootstrap methods mentioned
above. The SSI-COV algorithm used for modal identification is outlined below, in section 3 briefly explains the
block bootstrap methods, in section 4 is shown the procedure to determine the confidence intervals, in section 5
the procedure is implemented and the results are shown and in section 6 the conclusions are presented.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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2 Covariance-driven stochastic subspace method (SSI-COV)

The starting point of the SSI-COV method is to evaluate the output covariance matrices Λl for time lags
between ∆t and (2i− 1)∆t or equally for l = 1, 2, ..., 2i− 1. Then, these output covariance matrices are gathered
in a block Toeplitz matrix T1|i ∈ RnyiXnyi.

T1|i =


[Λi] [Λi−1] · · · [Λ1]

[Λi+1] [Λi] · · · [Λ2]

· · · · · · · · · · · ·

[Λ2i−1] [Λ2i−2] · · · [Λi]

 . (1)

In reality a finite number N of data is available, so, the output covariance matrices can be evaluated separately
from the following equation:

Λl =
1

N − l

N−l−1∑
k=0

y
k+l
y

T

k
, (2)

however, this expression can be very time-consuming, therefore, another available alternative is to use a high-speed
fast Fourier transform (FFT) based approach.

The Toeplitz matrix can be factorized into the extended observability matrixOi ∈RnyiX2nm and the reversed
extended stochastic controllability matrix Γi ∈ R2nmXnyi, as show bellow:

T 1|i = OiΓi =


C

CA

· · ·

CAi−1


[
Ai−1G · · · AG G

]
, (3)

thus, the Toeplitz matrix is the result of the product of a matrix with 2nm columns by a matrix with 2nm rows
(2nm is the dimension of the state-space model), hence, the rank of T1|i is 2nm, if 2nm < nyi. The rank of T1|i
is not less than 2nm due to the noises in the observed data. Generally, singular values caused by noise are much
lower than those caused by true data. To reduce the effects of noise, it is used the truncated decomposition of
singular values, which converts the singular values caused by noise into zeros. This is a common method used in
signal processing. Then, T 1|i can be written as a decomposition of singular values in the following way:

T1|i = USV T =
[
U1 U2

] S1 0

0 0

 V1

V2

T

= U1S1V
T
1 , (4)

where U ∈ RnyiXnyi and V ∈ RnyiXnyi are orthonormal matrices, with UTU = UUT = I ∈ RnyiXnyi and
V TV = V V T = I ∈ RnyiXnyi. S ∈ RnyiXnyi is a diagonal matrix containing positive singular values in
descending order. The comparison of eq. (3) and eq. (4) shows that the observability and the controllability matrices
can be calculated from the outputs of the SVD using the following partition of the singular values matrix:

Oi = U
1
S

1/2

1
, (5)

Γi = S
1/2

1
V

T

1
. (6)

With the observability Oi and controllability Γi matrices already calculated, computing the system matrices A and
C is simple. Matrix C equals to the first ny rows of Oi. There are two ways to identify the state transition matrix
A: by exploiting the shift structure of the extended observability matrix proposed by Kung [5] , as follows:

CA

CA2

· · ·

CAi

 =


C

CA

· · ·

CAi−1

A ⇐⇒ A =


C

CA

· · ·

CAi−1



† 
CA

CA2

· · ·

CAi

 = O†i Oi, (7)
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where (•)† represents the Moore-Penrose pseudo-inverse of a matrix. Oi contains the first ny(i − 1) rows of Oi

and Oi contains the last ny(i − 1) rows of Oi. Alternatively, Zeiger and Mcewen [6] suggests that the matrix A
could also be computed from the decomposition property of a shifted block Toeplitz matrix:

T 2|i+1 = OiAΓi, (8)

where the shifted matrix T
2|i+1

is composed of output matrices covariances Λl for l = 2, 3, ..., 2i. Introducing
eq. (5) and eq. (6) into eq. (8) and solving for A gives:

A = O†iT2|i+1
Γ†i = S

−1/2

1
U

T

1
T

2|i+1
V

1
S
−1/2

1
. (9)

From matrices A and C the modal parameters are extracted. The decomposition of the state transition matrix
A is given by:

A
2nmx2nm

=

2nm∑
k=0

ψkλkψ
−1
k , (10)

where ψk and λk are the discrete-time eigenvectors and eigevalues respectively. As A was obtained from the
discretization of the continuous-time matrix Ac, the equivalent continuos-time eigenproperties can be computed as
follows:

ψck = ψk, λck =
ln (λk)

∆t
. (11)

Natural frequencies and damping ratios are calculated from:

fk =
|λck|
2π

[Hz] , (12)

ξk = −Re (λck)

|λck|
∗ 100 [%] , (13)

where Re (•) represents the real part of a complex number. Finally, the observed modes can be computed through
the combination of eigenvectors of matrix A with matrix C:

φk = Cψk (14)

3 The bootstrap method

The bootstrap method was developed by Efron [7]. Supose the random variable y is the outcome of some
stochastic process with unknown probability distribution F and n independent measurements, collected in the
sample Y = {y1, y2, ..., yn}, are available to estimate a parameter of interest s(Y ). The bootstrap method consist
in create additional collections of data, denoted Y (b)∗ = {y∗(b)1 , y

∗(b)
2 , ..., y

∗(b)
n }, as a randomized or resampled

version of the original sample Y = {y1, y2, ..., yn}. Once these additional samples are formed, the usual sample
statistics can be applied. The basic assumptions in this method are: The measured outcomes of the random variable
y collected in Y = {y1, y2, ..., yn} must be independent and the measured outcomes yi must be representative
of the random source. When working with time series, the first assumption is violated due to the time series
Y = {y1, y2, ..., yn} is a collection of serially dependent measurements, hence, the application of the resampling
process with the individual outcomes will break up the covariance structure of the time series. Then, it is possible
to extent the method to time series through the resample blocks of data rather than individual observations. Three
methods of block bootstrap are shown below.

3.1 The moving block bootstrap (MB)

The steps to apply the moving block bootstrap are given by Künsch [8] and can be summarized as follows:
1. Break the time series Y = {y1, y2, ..., yn} into n − l + 1 overlapping blocks Bi = {yi, yi+1, ..., yi+l−1} of
length l for i = 1, 2, ..., n− l + 1. Then, form the collection B = {B1, B2, ..., Bn−l+1}.
2. Resample k = n/l blocks Bi with replacement to form B bootstrap time series replica by collecting the k
resampled Bi. For example, the bth bootstrapped time series may be: Y (b)∗ = {B1, B5, ..., Bn−l+1, ..., B1}.
3. Compute the bootstrap replica of the statistic of interest, s(b)∗(Y ) ≡ s

(
Y (b)∗). The estimator s(b)∗(Y ) could be

for instance the sample correlation estimate ΛY (b)∗(r) of the bootstrapped time series Y (b)∗, where r denotes the
lag.
4. Compute the sample statistic of interest over the ensemble of the B generated bootstrap replica s∗(Y ).
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3.2 The block of blocks bootstrap (BB)

The procedure for applying the block of blocks bootstrap was proposed by Politis [9] and it is described
below:
1. Determine the maximum lag rmax of interest up to which the bootstrapped correlations function are computed.
This value determine the length of the m-tuples Yi and is m = rmax + 1.
2. Form the possible n−m+ 1 overlapping, consecutive m-tuples Yi for the measured responses.
3. Form the auto-correlation function of each m-tuple ΛYi

.

4. Compute the average over l consecutive auto-correlation functions Bi,Y = l−1
∑i+l−1

i
ΛYi

and get the collec-
tion BY = {B1,Y , B2,Y , ..., Bn−m−l+2,Y }. l takes the role of the block length.
5. Resample k =

[
n−m+1

l

]
+ 1 auto-correlation functions Bi,Y from this collection to form the bootstrapped

auto-correlation fuctions ΛY (b)∗ = k−1
∑k

j=1
Bj,Y .

6. Repeat the process to obtain the desired B bootstrap replica.

3.3 The stationary bootstrap (SB)

To alleviate the effects of joining independent blocks, the stationary method was suggested by Politis [10].
Let Bi,b = {Yi, Yi+1, ..., Yi+b−1} be the block consisting of b observations starting from Yi. When j > N , Yj is
defined to be Yi, where i = j(modN) and Y0 = YN . Let p be a fixed number in [0, 1]. Independent of Y1, ..., YN ,
let L1, L2, ... be a sequence of independent and identically distributed random variables having the geometric
distribution, so that the probability of the event Li = d is (1− p)d−1 p for d = 1, 2, ... Independent of the Yi
and the Li, let I1, I2, ... be a sequence of independent and identically distributed variables which have the discrete
uniform distribution on 1, ...N . Now, a pseudo time series is generated in the following way. Sample a sequence
of blocks of random length by the prescription BI1,L1 , BI2,L2 .... The first L1 observations in the pseudo series are
determined by the fisrt block BI1,L1 of observations YI1 , ..., YI1+L1−1 the next L2 observations in the pseudo time
series are the observations in the second sampled block BI2,L2

, namely YI2 , ..., YI2+L2−1. The process is stopped
once N observations in the pseudo time series have been generated and then, one can compute the quantity of
interest ΛY (b)∗(r).

4 Confidence intervals of the modes with Bootstraps

To apply the Bootstrap technique in operational modal analysis, it is assumed that there is a single set of
simultaneous responses measured at different locations along the structure to determine the modal parameters of
the system. If it were possible to obtain a set B of modal parameters (i.e. repeat B times the modal test) for B
large enough, the statistics of these modal parameters such as mean, standard deviation and confidence intervals
could be determined. Repeating a measurement test a large number of times implies that the time series must
be long enough for an acceptable identification of the modal parameters, therefore, these time limitations make
this repetition process impractical. Then, the Bootstrap technique allows to simulate response data from the only
available set of measurements. According to Giampellegrini [11], once response data is simulated, it is then
possible to get a collection of B* sets of bootstrapped modal parameters by application of a curve-fit algorithm
to the bootstrapped time-series of correlation functions (for the SSI-COV method), from, which the statistics of
the system’s model can be determined. This process is shown in Fig. 1. Finally, the 95% confidence intervals
for each vibration mode are estimated by choosing the 2.5-percentile and 97.5-percentile of each bootstrap mode
population.

5 Implementation and results

In this article we will study the structure used in Ardila et al. [12], which consists of a concrete block of a
hollow gravity dam. This concrete block is equipped with a 3-channel sensor that is set-up to acquire acceleration
signals at a sampling frequency of 200 Hz. Acceleration time series of 19/05/2019 were collected from 10:00
a.m. to 10:30 a.m. with a total of 360000 samples in each direction (Longitudinal, transversal and vertical).
These acceleration data were decimated in order to obtain a final sampling frequency of 40 [Hz] i. e, a total of
72000 samples. The SSI-COV method was applied to the time series with a model order of 30. The results of the
natural frequencies and damping rates of the first five vibration modes are presented in Table 1. To determine the
confidence intervals for these identified parameters, the three block resampling methods shown in Section 3 were
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



Yeny V. Ardila, Iván D. Gómez, Jesús D. Villalba, Luis A. Aracayo

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
B* Bootstrapped set of modal parameters 

B* Bootstrapped response 

histories 

X1* 

 

Y1* 

 

Z1* 

 

XB* 

 

YB* 

 

ZB* 

 

…
 

Longitudinal 

Transversal 

Vertical 

X 

Y 

Z 

RESPONSE HISTORY 

…
 

B* Bootstrapped correlation matrices 

ሼ𝑓∗, 𝜉∗ሽ1, ⋯ , ሼ𝑓∗, 𝜉∗ሽ𝐵 

Figure 1. Bootstrap procedure.

applied. For the Moving Block and Block of Blocks methods, the time series of 72000 samples was divided into 12
equal consecutive blocks and a length of the block l equal to 3 i.e. 18000 samples was selected as the optimal. 300
response series were generated for each case and the sets of modal parameters obtained were grouped according to
the euclidean distance di,j =

√
fi − fj .

The results are presented in Fig. 2. The 95% confidence intervals are shown. According to Bajric et al. [13],
damping ratios are the modal parameter most sensitive to changes in correlation functions. It is also known that
acceleration time series of real large structures are non-stationary. When the time series are stationary, all the
points in each block have the same distribution and consequently the correlation function of each block will be
representative of the entire random process.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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Mode Frequency [Hz]
Damping ratio 

[%]

1 6,048 0,343

2 6,453 4,056

3 6,718 0,616

4 7,567 0,623

5 8,172 1,424

Table 1. Modal parameters identified in the concrete block

 

 
Mode 1 

Lower limit 6.041 6.041 6.038  0.248 0.241 0.353 

Mean 6.046 6.046 6.046  0.341 0.35 0.538 

Upper limit 6.053 6.055 6.055  0.429 0.425 0.772 

 
Mode 2 

Lower limit 6.403 6.404 6.404  3.126 3.539 2.172 

Mean 6.451 6.448 6.461  4.209 4.225 3.932 

Upper limit 6.496 6.499 6.497  5.112 5.407 5.241 

 
Mode 3 

Lower limit 6.664 6.661 6.664  0.277 0.356 0.296 

Mean 6.708 6.711 6.706  1.159 1.11 1.577 

Upper limit 6.772 6.771 6.778  3.73 4.216 5.227 

 
Mode 4 

Lower limit 7.546 7.554 7.543  0.425 0.437 0.514 

Mean 7.561 7.562 7.563  0.7 0.678 0.84 

Upper limit 7.58 7.578 7.593  1.007 0.965 1.258 

 
Mode 5 

Lower limit 8.136 8.147 8.13  1.142 1.215 1.227 

Mean 8.169 8.172 8.166  1.375 1.38 1.541 

Upper limit 8.189 8.189 8.188  1.586 1.523 1.93 
 

Figure 2. Confidence intervals of the first five vibration modes of the concrete block.

Then, in the case of non-stationary, when resampling the time series, some blocks may have different vari-
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ances and therefore the correlation functions computed may have a particular bias due to these particular blocks.
Randomness in block length and number of blocks in the stationary method (SB) causes greater changes in the
bootstrapped correlation functions resulting in increased variability in the identified damping ratios. This can be
seen in obtained results. If we calculate the error between the parameters identified with the original time series
and the parameters obtained by bootstrapping, the stationary boostrap (SB) presents the highest error being more
evident for the damping ratios. Finally, for the moving blocks (MV) and block of blocks (BB) methods, the errors
with respect to the parameters obtained are fairly even and the mean bootstrap is close to the mean of the original
series, however, this can be improved by increasing the bootstrap samples and by changing the block length.

6 Conclusions

The SSI-COV method was applied to identify the modal parameters of a concrete block, then, we explore
the uncertainties in these modal parameters through the estimation of the confidence intervals by appling three
different block bootstrap methods. The results based on 300 bootstrap samples show that the parameters obtained
by bootstrapping are consistent with the modal parameters obtained with the original acceleration time series.
Damping ratios exhibited larger variability due to changes in correlation functions. The stationary bootstrap, due
to its randomness in selecting the block length and number of blocks induces more changes in the correlation
functions and therefore, of the three methods, it showed the greatest error between the bootstrap parameters and
the original modal parameters.
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