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Abstract. Inspections carried out on materials used in engineering often reveal the presence of discontinuities in 

different shapes and scales. Discontinuities are one of the main forms of physical-mechanical degradation of the 

material’s properties. More specifically, joints are a particular type of discontinuity whose geometry is plane and 

have the mechanical capacity to transfer efforts along their opposite faces. Most works that aim to determine the 

properties of jointed materials tend to neglect differed deformation components, which are fundamental in several 

engineering fields. In this context, this work aims to propose a constitutive law that describes the effective behavior 

of viscoelastic jointed materials, without disregard aging effects. Backed by laboratory tests, the joints are modeled 

as interfaces whose mechanical behavior relates the stress vector to the displacement jumps on the joint’s faces. 

Coupling the viscoelastic behavior of the constituents (solid matrix and joints) to micromechanical relationships, 

the homogenized creep tensor was analytically formulated, being written as the creep tensor of the solid matrix 

added to a fourth-order tensor related to the joints’ properties. Classic cases of rock mechanics are derived, which 

show that particular distributions of joints families can cause anisotropy in the effective behavior of the material.  
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1  Introduction 

It is well established from laboratory and in situ observations that engineering materials display at different 

scales discontinuity surfaces with various sizes and orientations. Ranging from the fine (crystalline) to large 

(geodetic) scale, these discontinuities are usually referred to as joints or fractures and correspond to thin layers 

along which the physical and mechanical properties of the intact solid matrix significantly degrade. Since joints 

exhibit much poorer mechanical properties than the intact material [1-3], their presence strongly affects the overall 

behavior of rock media and constitute an essential weak component for the material. 

The viscoelastic behavior of jointed materials with long joints is frequently encountered in rock engineering 

problems [4-6]. The adjective ‘long’ refers to discontinuities that cut through the representative elementary volume 

of the material. In the modeling aspect, joints are viewed as 2D interfaces endowed with specific mechanical 

properties in normal and tangential directions. Provided that the rock medium involves a high density of long joint 

families, it appears advisable to resorts to the homogenized-based approaches and related micromechanical tools 

for the prediction of overall constitutive model of such materials [7]. 

The primary purpose of the present paper is to formulate the homogenized linear viscoelastic behavior of a 

jointed material from the knowledge of the joints and rock material respective properties. The three-dimensional 

formulation of the creep properties of the jointed rock is achieved by solving in the time domain a viscoelastic 

concentration problem stated on the representative elementary volume with prescribed stress loading history. The 

closed-form expressions do not require any restricting assumption regarding the joint orientations or associated 

constitutive model. An important feature of the homogenized model is related to its ability to cover a wide range 

of configurations while remaining simple to compute. 
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2  Modeling framework 

The upscaling procedure developed in the subsequent analysis is based on micromechanical concepts, relying 

upon the concept of a representative elementary volume (REV) for densely jointed mediums. In this context, we 

assume it is possible to define a REV for the studied materials with randomly distributed joints. On the following 

reasoning    stands for the REV of homogeneous matrix material cut by a discrete distribution of N  joint families  

1

N

j j ==  (Fig. 1) whereas the symbol \  refers to the homogeneous matrix material without the joints. 

Each joint family 
j  comprise a large number of same-orientation and mechanical-properties long joints 

crosscutting the REV. From the geometrical viewpoint, the joints are represented by flat planes, whose thickness 

and curvature can be neglected at the REV scale. The average spacing jd  of the jth joint family can be viewed as 

the characteristic dimension of the family [4] and should be very small with respect to the joint extension and to 

the size of the REV. At the REV scale, each joint is modeled from a constitutive mechanical viewpoint as an 

interface, geometrically described by a surface whose orientation is defined by a normal unit vector  jn  (Fig. 1). 

 

 

Figure 1. Representative elementary volume of the jointed material and associated loading mode conditions. 

The matrix material is modeled as a 3D continuum. The displacement field  , strain field   and stress field 

  are defined as usually on \ . In that respect, the symbol  refers to the average operator over the matrix 

material domain: 

\

1
dV  (1) 

The counterpart fields for a joint of family j , are the displacement jump  
  across the joint when following 

its normal jn , and the stress vector jT n=    acting upon the joint interface. The mechanical load applied to the 

REV corresponds to prescribed homogeneous stress boundary conditions [7] 

( ) ( ) ( )x n x n x x  =     (2) 

where ( )n x is the outer unit normal vector to the VER boundary   at any point x  and   represents the 

applied macroscopic stress tensor. For any statically admissible stress field  , that is, satisfying the momentum 

balance equation  div 0 = , the continuity of stress vector  jT n=   when crossing any joints of family j  and 

complying with the boundary condition (2) , it can be established from a classical reasoning that: 

( )x =  (3) 

Making use of the generalized form of Hill’s lemma [5-6], the macroscopic strain of jointed medium can be 

written as the contribution of two components by means of   

 
1

[ ]
s

n dS


  = + 
   (4) 

Where the first contribution   refers to the matrix average strain whereas the second term is related to the 

joints average deformation. The operator 
s

  stands for the symmetric part of dyadic product: 

( ) / 2( )
s

ij i j i ju v u v v u = +  in terms of components with respect to an orthonormal base. 
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3  Effective viscoelastic behavior of the jointed medium 

The viscoelastic formulation developed in this paper was concerned as an extension of Maghous and 

coauthors’ model [5], formulated within the framework of infinitesimal linear elasticity. Even so, the present work 

gives up the concept of non-linearity (present in [5]) associated with the elastic behavior of the rock matrix and 

joints. In the context of infinitesimal strain analysis, the stress-strain viscoelastic relationship for solids reads 

0

)( ) ( ) (t, ) : (( ), :
s

s s

t

t tt t d      



= = +


 (5) 

where 
s
 stands for the fourth-order creep tensor associated with rock matrix behavior and the operator  define 

the Boltzmann hereditary integral. This relationship relates the local stress and strain fields at any point of the 

domain  \ . 

Before introducing the viscoelastic behavior of the joints, it is convenient to express the elastic behavior of 

the joints, relating the stress vector to the displacement jump. It is assumed that any element of the family j  is 

characterized by the joint stiffness 
jk  relating the displacement jump  

   to the stress vector T  through 

[ ]jT k =       or     [ ] js T =   (6) 

where 
js  is the second-order compliance tensor of the joints of family  j . The joint stiffness 

jk  (or alternatively 

the joint compliance 
js ) is classically evaluated from appropriate laboratory tests carried out on jointed 

specimens. The works of Goodman [1] and Bandis and coauthors [2] represent reference contributions regarding 

the experimental identification of elastic joint properties. 

In the context of this work, the relationship between the stress vector and the displacement jump is extended 

to the viscoelastic framework by means of the following formulation 

0

[ ]( ) ( ) (t( , ) ( ), )

jt

j j
F

t F T F T t T dt t   



= =  + 

  (7) 

where 
jF  stands for the second-order creep tensor associated to the jth joint family behavior. The operator 

 can be viewed as a second-order Boltzmann hereditary integral. Considering the orthonormal local frame 

( , , ' )j j jn t t  (Fig. 1), defined for each joint of the set 
j  by the unit normal vector jn  

and by two orthogonal unit 

vectors ( , ' )j jt t  of the plane parallel to joint direction, the components of 
jF ,disregarding the coupling between 

joint normal and shear behavior, reads 

' ' 'j j j j j j j j j j
n t tF F n n F t t F t t=  +  +   (8) 

The creep function j
nF  stands for the joint creep function in normal direction, relating the normal 

displacement jump [ ] n   to the normal stress j
n T n =  . Component j

tF
 
(resp. '

j
tF ) is the tangential creep 

function, relating the displacement jump [ ] t   (resp. [ ] 't  ) to the shear stress 
j

t T t =   (resp. ' 't T t =  ). 

Appropriate creep tests are necessary to assess the joint creep functions j
nF , j

tF  and '
j

tF  [3]. 

Given the prescribed macroscopic stress history ( ) , the formulation of the effective viscoelastic behavior 

in the following upscaling problem requires solving ( , )   satisfying at any instant  0t   the following conditions 

div 0 ( \ )

is continous when crossing 

( )

( \ )

[ ]   ( )

s

j
j

j
j

T n

n n

F T

 

 



  

 

 = 

 = 



 =   


= 


=

 (9) 

Similarly to the elastic upscaling problem [5], the viscoelastic concentration problem (Eq.(9)) admits the 

following homogeneous stress solution 

( , ) ( ) \x t t x =     (10) 

The strain average rule (Eq.(4)) together with the constitutive viscoelastic equations (Eq. (5) and Eq. (7)) and 

the homogeneous solution (Eq. (10)) allow computing the macroscopic strain as 

( ) ( )
1

,

N s
j js j j

j

a F n nt 
=

 =  +     (11) 
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where 1
j

ja dS


=     is the specific area of the joint family 
j , which could be evaluated by the inverse 

of average joint spacing value. Equation (11) can be rearranged as 
hom =   (12) 

which implies that the expression of homogenized creep tensor 
hom

  reads 

1

hom ( , ) ( , )

j

s j
N

t t 
=

+=   (13) 

with 

1
' ' '

s s s s
j j j j j j j j j jj j j j j

n t t
j F n n n n F t n t n F t n t na

 
   +    +    


=


 (14) 

According Eq. (13), some important conclusions are achieved: 

• In addition to the original constituent’s anisotropy, a strong anisotropy of the macroscopic 

viscoelastic properties shall be associated with the privileged joint orientations. 

• The overall creep properties are obtained by adding separately the individual contributions of the 

rock matrix and of each joint family. This feature is attributed to the assumption of homogeneity for 

the rock matrix and to the modeling of joints as infinite planar interfaces 

• The aging properties from matrix material and joints are integrally transposed to the macroscopic 

scale. In addition to explaining the existence of aging in the effective behavior of the material, it can 

be observed that the intensity of aging is linked to the aging of materials in the microscale. 

4  Particular solution: Effective behavior with two families of joints 

This section aims to present the particular solution of Eq. (13) configured by a solid matrix intersected by 

two joint families 1  and 2 . The relative angular inclination between the corresponding joint normal directions 

is denoted by    (Fig. 2). The explicit calculation of hom  will be achieved by expressing its components in the 

fixed frame 1 1 1
1 2 3( , , ) ( , , ' )e e e n t t=  attached to the joints of family 1 , choosing the unit vector 

3e  parallel to the 

direction defined by the intersection line between a joint of 1  and a joint of 2 . The general expression of  hom  

is reduced in the particular situation of two sets of families to 

1 1 1 1
'1 1 1 1 2 1 2 1 3 1 3 1

2 2 2 2 2 2 2 2 2 22 2 2 2 2 2
'

hom

' '

s s s s

n t t

s s s s

n t t

s F e e e e F e e e e F e e e e

F n n n n F t n t n F t n t n

a

a

 
= +    +    +    

 

 
   +    +    

 

 (15) 

where the vectors 2n , 2t  and 2't  define the contribution of 2  joint family , which are expressed in the 

reference frame 
1 2 3( , , )e e e  by means of the angle   

2 2 2
1 2 1 2 3

cos sin ; sin cos ; 'n e e t e e t e   = − = + =  (16) 

 
Figure 2. Matrix material cut by two families of joints: REV and reference frame. 

Assuming isotropic viscoelastic properties to the solid matrix, the associated creep tensor s  can 

conveniently be expressed as 
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1 1

3 2

s s s
kF F= +  (17) 

where s
kF  and sF  are respectively the creep function in bulk and the creep function in shear of the solid matrix. 

The fourth-order tensors  and   are defined as  1 3 1 1=   and  = − . 

Conveniently, it is possible write the fourth-order homogenized creep tensor by means of the following 

matrixial representation  

11 12 16

12 22 26

44 45

45 55

16 2

m

6 66

ho

0 0
9 3 9 6 9 6

0 0
9 6 9 3 9 6

0 0 0
9 6 9 6 9 3

0 0 0 0

0 0 0 0

0 0 0

s s ss s s
k k k

s s ss s s
k k k

s s ss s s
k k k

s

s

s

F F FF F F

F F FF F F

F F FF F F

F

F

F

  

  

  







  

  

 

 

  

 
+ + − + − 

 
 
 − + + + −
 
 

  − − +
 
 

+ 
 

+ 
 + 

 (18) 

where the non-null terms corresponding to the joints contribution are 

1 1 2 2 4 2 2 2 2 4 2 2
11 22

2 2 2 1 1 2 2 2
44 ' 55 ' '

1 1 2 2 2 2 2 2 2 2 2 2
66 12

2 2 2
16

1 1
cos sin 2 ; sin sin 2

4 4

sin ; cos

1 1
sin 2 cos 2 ; sin 2 sin 2

4 4

cos sin 2

n n t n t

t t t

t n t n t

n

F F F F F

F F F

a

F F F F F

a a a

a a a

a a

F

a

     

   

     

  

   
= + + = +   

   

= = +

  = + + = −    

= − 2

2 2 2 2 2 2
26 45 '

1
sin 4

4

1 1
sin sin 2 sin 4 ; sin 2

4 2

t

n t ta

F

F F Fa



     










  

+  
 


  = − − =   

 (19) 

It is noted that the above representation is consistent with the following matrix notation for stress and strain 

   11 22 33 23 13 12 11 22 33 23 13 12; 2 2 2
T T

                (20) 

where subscript ' 'T  stands for the transposition of a vector. 

5  Example of application 

We examine in this section the overall creep properties in shear of a shale rock cut by a single family of 

crosscutting joints as schematized in Fig. 3. The particular solution of this example could be accessed using Eq.(15) 

doing 2 0nF = , 2 0tF =  and 2
' 0tF = . Subscript ' 'j  referring to joints is omitted in this section. By sake of 

simplicity, the aging effect will not be analyzed in this section. 

 
Figure 3. Shale-like rock under shearing parallel to joints direction. 
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Based on viscoelastic shear creep experimental data ([3] and [8]), the individual non-aging viscoelastic 

behavior in shear of the shale rock matrix (Fig. 6-a) and of the joints (Fig. 6-b) can be modeled according the 

rheological Kelvin-Voigt models. 

                                      

  (a) viscoelastic shear model ( )s t  for matrix material                 (b) viscoelastic shear model ( )tk t  for joints 

Figure 4. Kelvin-Voigt rheological models used for the constituents of the jointed rock. 

The values of the parameters defining the shear relaxation modulus of the shale matrix ( )s t
 
and that of the 

joints ( )tk t  provided in the above mentioned works are 

Table 1. Material parameters defining the shear behavior of the matrix and of the joints. 

0 0.181  GPas =  1 0.299  GPas =  7.539  GPa.hs =  

,0 6.338 GPa/mtk =  
,1 5.333 GPa/mtk =  5.792 GPa.h/mt =  

 

Assuming isotropy for the joint shear response (i.e., 't tk k= ), the shear creep component reads therefore 

 
hom s

shear tF F F= +a  (21) 

where the creep functions sF  and tF  of the rock matrix and the joints are obtained from the relaxation 

counterparts s
 
and tk  (associated with the respective Kelvin-Voigt models) by inverse Boltzmann operator. 

Taking a joint specific area equal to 110 m−=a , corresponding to an average joint spacing of 0.1m , Fig. 5 

displays temporal evolution of the homogenized creep function in shear comparing to the intact shale rock. 

 

 

Figure 5. Time evolution of the shear creep functions of the intact and jointed rocks. 

Figure 5 exhibit the significant increase in the shear creep function induced by the presence of the joints when 

compared to that of the intact material. This result is corroborating laboratory observations over high joint density 

rocks, such as shale-like rocks, which proves the time-dependent properties are strongly affected by the presence 

of discontinuities, which increase the overall deformability of the rock mass [8]. Additionally, the joints properties 

affect mainly the early stages ( 100 ht  ) of homogenized creep function, increasing significantly the evolution 

rate. Although only the component associated with shearing parallel to the joints was analyzed, similar 

observations could be expected for the other components of the overall creep components. 



C. B. Aguiar, R. Rossi, S. Maghous 

CILAMCE 2020 

Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC 

Foz do Iguaçu/PR, Brazil, November 16-19, 2020 

 

6  Conclusions 

Relying upon an upscaling approach developed in the context of micromechanics of randomly heterogeneous 

materials, the effective viscoelastic properties of a jointed material have been assessed. The formulation explicitly 

addresses the situation of materials with a dense network of crosscutting joints and extends early formulations to 

aging linear viscoelasticity. In the framework of modeling, the joints are viewed as planar interfaces whose 

constitutive behavior relates the local stress vector and displacement jump histories. 

The micromechanical reasoning consisted in solving the viscoelastic concentration problem stated on the 

representative elementary volume of the jointed material. General closed-form expressions for the homogenized 

creep properties have been thereby derived from the knowledge of the viscoelastic behavior of the individual 

constituents. The creep anisotropy induced by the existence of the privileged directions associated with the joint 

orientation distribution is automatically accounted for in the homogenization process. An important feature of the 

formulation lies on the fact that the overall creep tensor expresses as the sum of the individual contributions of 

solid matrix and each joint family, thus disregarding the possible interaction between the joint’s family. This is 

clearly attributed to the assumed homogeneity of rock matrix at the REV scale and the modeling of the joints as 

infinite planar interfaces.  

It should be emphasized that effective validation of the theoretical modeling remains to be achieved through 

comparison of the model predictions against experimental data from laboratory or field tests. In that respect, a 

major concern is the lack in available data regarding the creep properties of joints. A possible strategy to overcome 

this difficulty could rely upon inverse analyses developed at macroscopic scale with the aim to identify the 

viscoelastic properties of the constituents (i.e., solid matrix and joints) from direct comparisons with experimental 

results referring to the material or structure levels. 
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