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Abstract. Composite materials have become an attractive alternative to traditional materials because of their 

advantages of high strength and stiffness combined with low density, excellent durability, and design flexibility. 

In many applications, the composites are subjected to temperature gradient that can produce critical thermal 

stress or strain fields. Then, the coefficients of thermal expansion of fiber reinforced composites are very 

important parameters for the design and analysis of composite structures. In this work, the effective coefficients 

of thermal expansion of periodic unidirectional fiber reinforced composites are studied using a micromechanical 
model based on the Levin’s formula. The necessary effective elastic properties of the composites are evaluated 

through an analytical procedure based on the Eshelby equivalent inclusion method and expressed in terms of 

Fourier series. Numerical examples involving thermal expansion of traditional advanced composites are 

analyzed. The results provided by the model are compared with predictions obtained using finite element 

procedures and analytical simplified methods, as well as available experimental data. These comparisons 

demonstrate a very good performance of the presented micromechanical model. 

Keywords: coefficients of thermal expansion, fiber reinforced composites, Levin’s formula. 

1    Introduction 

Due to their unique characteristics, composite materials have become an attractive alternative to traditional 

materials because of their advantages of high strength and stiffness combined with low density, excellent 

durability, and design flexibility [1,2]. In many applications, the structural systems made with composite 
materials are subjected to high thermal gradients together with mechanical loadings. Then, for the design of such 

systems, the evaluation of the effective thermal expansion coefficients is an important task, as well as the 

effective elastic moduli. As it is well known, these effective properties are strongly dependent on the 

microstructural characteristics of the composite, such as geometry and distribution of the inhomogeneities, 

volume fractions of the constituent phases, and their coefficients of thermal expansion and elastic properties 

[3,4]. The heterogeneous nature of the microstructures of composites becomes the prediction of their effective 

behavior more elaborated than for the traditional homogeneous materials (metals and polymers, etc.) [4,5].  

 A large number of models for the prediction of the effective thermoelastic properties of composites have 

been proposed in the last six decades [6-9]. Such models, in general, are based on the micromechanics theory 

and present analytical or numerical formulations with varying degrees of complexity. Among the analytical 

thermoelastic models, those based on the mean-field theory, originated from the Eshelby equivalent inclusion 
problem [10]), have been very attractive and had an important role. In this category, it can be cited the models 

developed from the self-consistent [11,12], Mori-Tanaka [13,14], double-inclusion [15] and differential schemes 

[16,17]. The essential difference between such analytical approaches is basically in their strategies to consider 

the constituent interactions. These mean-field micromechanical models derived originally for elastic 

homogenization can be extended to evaluate the effective thermal conductivity [18] and thermal expansion 

coefficients [19,20] of composites. Levin [21] and Rosen and Hashin [22] derived expressions that allow 

determining the effective coefficients of thermal expansion of two-phase composites in function of coefficients 

of thermal expansion of the phases and effective elastic moduli.  

 The periodic composites constitute an important class of heterogeneous materials whose microstructure can 

be conceived as constructed by regularly replicated elementary block named repeating unit cell (RUC) [23,24]. 

A number of analytical and numerical models have also been proposed for homogenization of periodic 

composites. Usually, these models are based on the behavior of a repeating unit cell subjected to periodic 
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boundary conditions and use numerical tools, such as finite-element method [3,9] and finite-volume theory[25-

27]. Due to the periodicity of physical fluctuating fields generated in a material representative volume element 

(RVE) subjected to homogeneous boundary conditions, Fourier series have also been employed in the 

construction of analytical micromechanical models such periodic composites [15,28-31].  

 This paper presents a study on effective coefficients of thermal expansion of two-phase periodic composite 

materials using a model based on Levin’s formula [21] with the effective elastic moduli evaluated through a 

micromechanical procedure expressed in terms of Fourier series and derived using the eigenstrain concept [10]. 

The results provided by the model are compared with predictions obtained using finite element procedures and 

analytical simplified methods, as well as available experimental data. These comparisons demonstrate a very 

good performance of the presented micromechanical model. 

2    Effective thermal expansion coefficients: Levin’s formula 

Consider a statistically homogeneous 𝑁-phase composite material represented by a representative volume 

element (RVE) with volume 𝑉 and boundary surface 𝑆 (Fig.1). Suppose that the RVE is subjected to two 

different boundary conditions: 1) homogeneous stress 𝒕0(𝒙) = 𝛔0𝒏, being 𝛔0 a stress matrix whose elements are 

constant and 𝒏 the outward unit vector normal to the surface 𝑆 and 2) prescribed constant temperature 𝜃(𝒙) =
𝜃0, for all 𝒙 ∈ 𝑆. Applying the virtual work theorem for the two systems subjected to the above boundary 
conditions,  

∫ 𝝈(𝒙)𝑡𝜺′(𝒙)𝑑𝑉
𝑉

= ∫ 𝒕0(𝒙)𝑡

𝑆

𝒖′(𝒙)𝑑𝑆 (1) 

where (′) is used to identify the field vectors (stress 𝝈′, strain 𝜺′and displacement 𝒖′) of the RVE subjected to 

the temperature boundary condition. Making the integral decomposition into the sum of integrals over the phase 

volumes 𝑉𝑘  and using the divergence theorem for the right side of eq. (1), results 

∑ ∫ 𝝈(𝒙)𝑡𝜺′(𝒙)𝑑𝑉𝑘
𝑉𝑘

𝑁

𝑘=1

= 𝛔0𝑡𝜶𝜃0𝑉 (2) 

where 𝜶 = [𝛼11 𝛼22 𝛼33 2𝛼23 2𝛼13 2𝛼12] is the effective thermal expansion coefficient vector of the composite.  

 It is observed that the average stress �̅�′ = 𝟎 and �̅�′ = 𝜶𝜃0. Considering that the average stress vector in the 

kth phase can be written as �̅�(𝑘) = 𝑩(𝑘)𝝈0, being 𝑩(𝑘) the phase stress concentration matrix [15], the following 
relation can be obtained from eq. (2): 

𝜶 = ∑ 𝑐𝑘

𝑁

𝑘=1

𝜶(𝑘)𝑩(𝑘) (3) 

where 𝑐𝑘 = 𝑉𝑘 𝑉⁄  indicates the volume fraction of the kth phase, which presents a volume 𝑉𝑘  and coefficient of 

thermal expansion 𝛼𝑘. From micromechanics theory of elastic heterogeneous materials, the stress concentration 

matrix of the phase k can be related to its strain concentration matrix 𝑨(𝑘)and stiffness matrix 𝑪(𝑘) by 

𝑩(𝑘) = 𝑪(𝑘)𝑨(𝑘)𝑪
−1

 (4) 

being �̅� the effective stiffness matrix of the composite [15]. Substituting eq. (4) into eq. (3), the effective thermal 
expansion coefficient vector can be evaluated as 

𝜶 = ∑ 𝑐𝑘

𝑁

𝑘=1

𝑪
−1

𝑨(𝑘)𝑡𝚪(𝑘) (5) 

where 𝚪(𝑘) = 𝑪(𝑘)𝜶(𝑘). Here, the matrix �̅� is computed through a model based on the eigenstrain concept and 
expressed in terms of Fourier series presented by the authors and outlined in the next section. Equation (5) 

represents the Levin’s formula for evaluation of effective coefficients of thermal expansion [21]. 
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3    Outline on the elastic homogenization model 

Suppose a representative volume (RVE) of a two-phase periodic composite subjected to a strain homogeneous 

boundary condition 𝒖0(𝒙) = 𝛆0𝒙 similar to that of Fig. 1. For this condition, the displacement field of a repeated 
unit cell (RUC) of the RVE is given by a two-scale representation in the form 

𝒖(𝒚) = 𝜺0𝒙 + �̃�(𝒚) (6) 

where 𝒚 indicates the local coordinates of the RUC scale, the first term on the right side represents the 

macroscopic contribution and �̃� is the fluctuating displacement vector (Fig. 1). For the considered homogeneous 

boundary condition and material periodic microstructure, �̃�(𝒚) is a periodic function over the RUC domain 𝑈. 

This periodicity allows writing the fluctuating displacement vector in Fourier series as [15] 

�̃�(𝒚) =  ∑ �̂�(𝝃

±∞

𝝃

) exp(𝑖𝝃𝑡𝒚)                  �̂�(𝝃) =  
1

𝑈
∫ �̃�(𝒚)

𝑈

𝑒𝑥𝑝(−𝑖𝝃𝑡𝒚)𝑑𝑈  (7) 

with the components of the vector 𝝃 defined by 𝜉𝑟 = 𝜋𝑛𝑟 𝑎𝑟⁄ , (𝑟 = 1,2,3), being 2𝑎𝑟 the RUC side dimensions 

and 𝑛𝑟 = 0, ±1, ±2, … ± ∞. Analogously, the fluctuating strain field �̃�(𝒚) associated with �̃�(𝒚) also can be 

expanded in Fourier series. 

 

 

Figure 1. Representative volume element and repeating unit cell of a periodic composite. 

 Denoting by 𝑪Ω and 𝑪 the stiffness matrices of the actual inclusion and matrix material, respectively, the 
consistency condition of the equivalent inclusion method [10] is expressed in the form 

𝛁 ∙ 𝑪[𝜺0 + �̃�(𝒚) − 𝜺∗(𝒚)] = 𝟎 (8) 

where 𝜺∗(𝒚) is the periodic eigenstrain vector which represents the primary unknown of the homogenization 

problem. After considering the equilibrium conditions for the stress field inside the RUC, it is possible to show 

that [15] 

𝜺0 = −(𝑪𝛀 − 𝑪)−1𝑪𝜺∗(𝒚) −
1

𝑈
∑ 𝑺(𝝃)𝑪 [∫ 𝜺∗(𝒚′)

Ω

exp(−𝑖𝝃𝑡𝒚′)𝑑Ω]

±∞

𝝃

exp(𝑖𝝃𝑡𝒚) (9) 

being 𝑺(𝝃) a (6 𝑥 6) matrix depending on the stiffness matrix 𝑪 [31].. The homogenization model only requires 

the evaluation of the average value of 𝜺∗(𝒚) over the inclusion domain Ω more than its local values. Considering 

the mathematical complexity of the problem expressed by eq. (9), its solution is made by using approximate 

procedures. Here, the expression used to obtain the average eigenstrain vector �̅�Ω
∗  is given by [31] 

𝑦2 

RVE 

2𝑎3 

Ω 

𝑈 

𝑥2 
 

𝑥3 
 

𝑥1 

2𝑎2 

𝑦3 

2𝑎1 
𝑦1 

RUC 

𝒖0(𝒙) = 𝜺0𝒙 
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𝑐𝑗𝜺0 = −𝑐𝑗(𝑪𝛀 − 𝑪)−1𝑪�̅�Ω𝑗

∗ −
1

𝑈Ω
∑ ∑ 𝑺(𝝃)𝑪

±∞

𝝃

𝑀

𝑠=1

𝑔𝑠(−𝝃)𝑔𝑗(𝝃)�̅�Ω𝑠

∗  (10) 

 Equation (10) is solved by dividing the inclusion domain Ω into 𝑀 subdomains or partitions Ω𝑠 (𝑠 =
1,2, … , 𝑀) with volume fractions 𝑐𝑠 =  Ω𝑠 Ω⁄  and assuming for each one of them the average value ε̅Ωs

∗ .  

 The functions 𝑔𝑠 and 𝑔𝑗 appearing in eq. (10) represent the following integrals: 

𝑔𝑗 (𝝃) = ∫ exp(𝑖𝝃 ∙ 𝒚)𝑑Ω𝑗
Ω𝑗

                 𝑔𝑠 (−𝝃) = ∫ exp(−𝑖𝝃 ∙ 𝒚)𝑑Ω𝑠
Ω𝑠

 (11) 

 The average eigenstrain vector over the total domain Ω can be expressed in terms of the average eigenstrain 

vectors of the partitions as  

�̅�𝛀
∗ = ∑ 𝑐𝑠�̅�Ω𝑠

∗

𝑁

𝑠=1

 (12) 

which, using eq. (10), can be obtained in the compact form 

�̅�𝛀
∗ = 𝓕𝑡𝓛−1𝓕𝜺0 (13) 

where 

𝓛 = [

𝑳11 𝑳12 ⋯ 𝑳1𝑀

𝑳21 𝑳22 ⋯ 𝑳2𝑀

    ⋯ ⋮
𝑳𝑀1 𝑳𝑀2 ⋯ 𝑳𝑀𝑀

]

(6𝑀×6𝑀)

                       𝓕 = [𝑐1𝑰   𝑐2𝑰 ⋯ 𝑐𝑀𝑰]6×6𝑀
𝑡  (14) 

 being 𝑰 the 6 × 6 identity matrix and  

𝑳𝑗𝑠 = 𝑐𝑗(𝑪𝛀 − 𝑪)−1𝑪𝛿𝑗𝑠 −
1

𝑈Ω
∑ 𝑺(𝝃)𝑪𝑔𝑠(−𝝃)𝑔𝑗(𝝃)

±∞

𝝃

 (15) 

 More details can be found in reference [31]. 

4    Effective coefficients of thermal expansion 

Using the equivalent inclusion method together with eq. (13) the effective elastic stiffness matrix of the 

composite can be obtained as [31] 

𝑪 = 𝑪(𝑰 − 𝑐Ω𝓕𝑡𝓛−1𝓕) (16) 

being 𝑐Ω = Ω 𝑈⁄  the volume fraction of the inclusion in the repeating unit cell. Now, using eq. (5) for the case of 

two-phase composite (𝑁 = 2), the effective thermal expansion coefficients of the composite can be obtained by 

the expression 

𝜶 = 𝑐Ω 𝑪
−1

𝑨Ω
𝑡 𝚪Ω + (1 − 𝑐Ω) 𝑪

−1
𝑨𝑡𝚪 (17) 

where 𝑨Ω and 𝑨 are the strain concentration matrices of the inclusion and matrix, respectively, which are given 

by 

𝑨Ω =
1

𝑐Ω

(𝑪𝛀 − 𝑪)−1(𝑪 − 𝑪)                 𝑨 =
1

(1 − 𝑐Ω)
(𝑰 − 𝑐Ω𝑨Ω) (18) 

 In eq. (17), 𝚪Ω = 𝑪𝛀𝜶Ω and 𝚪 = 𝑪𝜶, being 𝜶Ω and 𝜶 the vectors of thermal expansion coefficients of the 

inclusion and matrix, respectively.  
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5    Numerical examples  

5.1   Effective thermal expansion coefficients of a AS4/epoxy composite 

This example treats of a composite constituted by an epoxy matrix reinforced with longitudinal long AS4 carbon 

fibers. The fibers are assumed as transversely isotropic and distributed in a square array. The properties of the 

phases are presented in Tab. 1 (see, Dong [9]). Here, the subscripts 1 and 2 represent the longitudinal and 

transverse directions, respectively. Figure 2 shows the results for the longitudinal and transverse effective 

coefficients of thermal expansion generated by the present model using 𝑀 = 1 (without partition) and 𝑀 = 90 
in eq. (10). For comparison, results obtained by the finite-element method (FEM) [9] and several simplified 

analytical micromechanical models [32-35] are also shown in Fig. 2(b). As observed, the predictions of the 

present model are in excellent agreement with those obtained by the finite-element method and experimental 

test. Among all simplified analytical procedures, the Hashin model showed results with a very good 

approximation in relation to those generated by the present formulation and finite-element method. 

Table 1. Properties of the epoxy matrix and AS4 carbon fiber [9] 

 
𝐸1 

(𝐺𝑃𝑎) 
𝐸2 

(𝐺𝑃𝑎) 
𝐺1  

(𝐺𝑃𝑎) 
𝐺2  

(𝐺𝑃𝑎) 
𝜈1 𝜈2  

𝛼1 

(10−6/0𝐶) 

𝛼2 

(10−6/0𝐶) 

AS4 235 14 6.917 5 0.2 0.4 -0.40 18 
Epoxy 2.581    0.265  64  

 

 

                                                (a)                                                                                    (b) 
Figure 2. Effective thermal expansion coefficients of the AS4/epoxy composites: (a) longitudinal direction and 

(b) transverse direction. 

5.2  Effective thermal expansion coefficients of a T300/epoxy composite 

In this example, the model is employed to evaluate the longitudinal and transverse effective coefficients of 
thermal expansion (CTE) of a periodic composite with an epoxy matrix reinforced by unidirectional T300 carbon 

fiber. The thermoelastic properties of the constituent materials are shown in Tab. 2. The transversely isotropic 

fibers are assumed as having a square packing arrangement inside the isotropic epoxy matrix.    

Table 2. Thermoelastic properties of the epoxy matrix and T300 fiber 

 𝐸1 
(𝐺𝑃𝑎) 

𝐸2 
(𝐺𝑃𝑎) 

𝐺1  
(𝐺𝑃𝑎) 

𝐺2   
(𝐺𝑃𝑎) 

𝜈1  𝜈2  𝛼1 

(10−6/0𝐶) 

𝛼2 

(10−6/0𝐶) 

T300 233.13 23.11 8.97 8.28 0.2 0.4 -0.54 10.08 

Epoxy 4.35  1.59  0.37  43.92  
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 Figure 3 shows the results obtained for the longitudinal and transverse coefficients of thermal expansion 
compared with finite-element method (FEM) predictions [3], analytical solutions [32-35], and experimental data 

[36]. The finite-element solutions have been obtained using refined unit cell discretizations with ten-node 

tetrahedral coupled field solid elements available in a commercial finite-element program, as described in [3]. 

Figure 3 illustrates also that the results provided by the micromechanical model are in excellent agreement with 

the mentioned finite-element solutions and present a very small deviation with respect to the experimental data 

for the effective transverse coefficient of thermal expansion. Again, as can be seen in Fig.3(b), the predictions of 

the Hashin model are in good agreement with the results of the present formulation, as well as with those 

corresponding to the finite-element solution.  

       

       
                                                 (a)                                                                           (b) 

Figure 3. Effective thermal expansion coefficients for the T300/Epoxy composite: (a) longitudinal direction and 
(b) transverse direction. 

6    Conclusions 

In this work a model based on Levin’s formula has been presented to evaluate the effective coefficients of 

thermal expansion of two-phase elastic periodic composites. For the computation of the effective stiffness of the 

material, it is employed a procedure derived using the eigenstrain concept and expressed in term of Fourier 

series. The model is applied to obtain the transverse effective thermal expansion coefficients of polymer 

composites reinforced with unidirectional transversely isotropic carbon fiber. The results provided by the present 

model have been compared with predictions obtained by analytical and finite-element micromechanical 
procedures, as well as experimental data. These comparisons show a very good performance of the presented 

model, especially in relation to the finite-element solutions.  
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