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Abstract. The quantification of uncertainties consists in exploring how much the uncertainties in initial data
can propagate and change the final results. One of the most used methods is the Monte Carlo Simulation
Method. Despite it’s simplicity and versatility for engineering problems, this method presents high compu-
tational costs for complex problems, which might render it inapplicable. The Polynomial Chaos is an efficient
alternative for Monte Carlo Simulation Method because of its orthogonal properties and convergence. This
work approaches the quantification of uncertainties of discrete dynamic systems using generalized Polyno-
mial Chaos. The discrete system will be a general model of mass-spring-damper and the uncertainties will be
related to the initial conditions. This method will be validated by comparison with results obtained by Monte
Carlo Simulation.
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1 Introduction

The cost reduction, work time and tests with prototypes are the main reason of the computational sim-
ulations became common in engineering. However, despite the computational advances make more sophis-
ticated and numerically accurate simulations possible with deterministic models, the results don’t coincide
with experimental data, where not even in identical experiments the results are the same [1]. A lot of these un-
certainties are related to material properties, loading and environment, they are inevitable in the engineering.
Without considering these uncertainties, the results obtained using deterministic numerical methods may
be not reliable [2].

The quantification of uncertainties consists in exploring of how much the uncertainties in initial data
can propagate and change the final results. A lot of methods attach the uncertainties to a random variable
- these methods are said to be probabilistic [2]. The most famous is the Monte Carlo Simulation (MC) that,
however simple and versatile, presents high computational costs in complex problems [2–4].

Polynomial chaos expansion (PC) is one alternative for Monte Carlo simulation. Lots of works are pub-
lished using this method, like quantification of uncertainties using polynomial chaos and Harmonic Balance
method [3, 5]; PC and Gauss Integration [2]; Inverse power methods via PC [4]; The Galerkin method [1, 6]
and Askey-Wiener scheme, which consists of obtaining approximate solutions from projections in subspace
of finite dimension dense in the space of theoretical solution of the problem. One of these subspace is gener-
ated by given polynomials or random variables that belong to a set of orthogonal polynomials known as the
Askey-Wiener scheme [7].

This paper approaches a quantification of uncertainties of discrete dynamic systems using PC combined
with a reduction of order. The discrete system is a model of mass-spring-damper and its uncertainties will
be related to the initial conditions. The results obtained by PC and PC-MC are compared to MC results.
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2 Polynomial Chaos Method Applied at Stochastic Discrete Vibrations Systems

The Polynomial Chaos Method is applied into the following stochastic one degree of freedom problem:
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Determine x ∈ C 2((0,T );L 2(Ω,F ,P )) such that:

(m ẍ +c ẋ +k x )(t ,ξ) = F (t ) ∀(t ,0)∈ (0,T )× (ω,F ,P );
Subject by:

x (0,ξ) = x0(ξ);
ẋ (0,ξ) = v0(ξ);

(1)

Where ξ is the random variable, m is the mass, k is the stiffness, c is the damper coefficient and F (t ) is the

load. The approximate numerical solution is wanted in the following form:

x (t ,ξ) =
n
∑

i=1

uiψi (t ,ξ); (2)

Where ui are coefficients to determine,ψi is the i-th approximation function and n is the size of the stochas-

tic system. Introducing eq. (2) into eq. (1), the residual function Rn (t ,ξ),r x0
n (ξ),r v0

n (ξ):
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From that, the minimization of the residual projection at the polynomial chaos subspace:
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Where 〈.,.〉 is the inner product. For n =2, you have the following Initial Problem Value:
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Subject by:

u (2)1 (0) = 〈x0,ψ1〉L 2 ;

u (2)2 (0) = 〈x0,ψ2〉L 2 ;

u̇ (2)1 (0) = 〈v0,ψ1〉L 2 ;

u̇ (2)2 (0) = 〈v0,ψ2〉L 2 .

(5)

Is defined a order reduction like it follows:
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u (2)1 (t ) =u1(t );
u (2)2 (t ) =u2(t );
u̇ (2)1 (t ) = u̇1(t ) =u3(t );
u̇ (2)2 (t ) = u̇2(t ) =u4(t );
ü (2)1 (t ) = u̇3(t );
ü (2)2 (t ) = u̇4(t ).

(6)

With the relations above and setting F (t ) =0, the eq. (5) can be written as:
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Or in a vector-matrix form:

u̇(t ) =Au(t ). (8)

The solution of eq. (8) is given by:

u(t ) = e At u0; (9)

Where:

u0 =
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The mean µ and varianceσ can be determined by:

¨

µ=E
�

u (2)(t )
�

;

σ2=E
�

(u (2)−µ)2(t )
�

;
(11)

From eq. (11), the mean for displacement µx and velocity µv are given by:

¨

µx = (e At )11〈x0,ψ1〉L 2+(e At )12〈x0,ψ2,〉L 2+(e At )13〈v0,ψ1〉L 2+(e At )14〈v0,ψ2〉L 2

µv = (e At )31〈x0,ψ1〉L 2+(e At )32〈x0,ψ2〉L 2+(e At )33〈v0,ψ1〉L 2+(e At )34〈v0,ψ2〉L 2 ,
(12)

and the variance for displacementσ2
x and velocityσ2

v are given by:

¨
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�2
.

(13)

3 Methodology Validation

The validation of the application of Polynomial Chaos is made by comparison with results obtained by
Monte Carlo Simulation. The case study is a one degree of freedom mass-spring-damper system, with no
loads and uncertainties at initial conditions x0(ξ) and v0(ξ). The main objective is to calculate the mean and
variance of displacement and velocity, where the PC is implemented by two approaches. The first one is using
eq. (12) and eq. (13). The second one is combined PC with MC, where samples are generated using eq. (9)
and then the mean and variance are determined. The relative errors between MC/PC and MC/PC-MC are
determined, as the computational times for MC/PC-MC. Since the random variable ξ follows up a uniform
distribution with ξ∈ [−1,1], the optimal polynomial type is the Legendre polynomials [8]. The simulations
were made in Matlab R2018a, running into a computer with operational system Windows X Professional 64
bits, stored into a Solid State Drive (SSD); processor Intel i3 2.0 GHz and 12 Gb of RAM.
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4 Results

Setting m =300 k g ; c =2064.86 N s/m ; k =9869.6 N /m ; x0=0.1 m ; v0=0.05 m/s ; t ∈ [0,2] s ; the com-
putational times for MC for 5000 and 10000 samples are, respectively, 891.62 s and 1806.4 s . The PC-MC was
slower with 941.85 s for 5000 samples and 1962.1 s for 10000 samples. The reason for these results might
be the fact the model solved by MC (that also uses the order reduction and the exponential solution) has
only the variables x1(t ,ξ) and x2(t ,ξ) - displacement and velocity, respectively- to be determined. PC-MC
has u1(t ,ξ),u2(t ,ξ),u3(t ,ξ) and u4(t ,ξ) to be solved and provide approximate solutions for the displacement
and velocity.

The relative errors between MC and PC-MC for mean and variance, in a 10000 samples, are shown in
Fig. 1 and Fig. 2.

Figure 1. Displacement relative errors between MC and PC-MC

Figure 2. Velocity relative errors between MC and PC-MC

Despite the slower computational times, the relatives errors between PC-MC and MC are less than 1%.
The relative errors for PC also are less than 1% as shown in Fig. 3 and Fig. 4.
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Figure 3. Displacement relative errors between MC and PC

Figure 4. Velocity relative errors between MC and PC

5 Conclusions

This paper is a part of a research project about applications of the Faedo-Galerkin method and the Askey-
Wiener scheme for quantification of uncertainties for vibration in structural systems. In this particular work,
a mathematical modeling is proposed for the quantification of uncertainties of a discrete dynamics system
using Polynomial Chaos Method (PC) and a reduction order to a one degree of freedom mass-spring-damper
system. The Monte Carlo Simulation (MC) was used as benchmark for the mean and variance obtained by PC
and PC-MC. The results showed that despite being a good approximation, the PC-MC was slower than MC.
Additionally, the direct determination of the mean and variance by PC may not be as simple and versatile for
certain problems as MC is, but is shown to be generally a good alternative, since it doesn’t require a sample
generation.
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