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Abstract. Designing a frame to withstand the loss of columns has a great impact over the construction costs, and 

it may not be viable since not all buildings are likely to be subjected to extraordinary events that might remove 

these supporting elements. In view of that, this paper employs a formulation for the optimal design of framed 

structures in the design of a continuous beam. This formulation allows independent column loss probability, and 

combines the intact structural condition with all the column loss conditions in one objective function. It is shown 

a threshold column loss probability for with the optimal design becomes indifferent to the objective consideration 

of column loss. Such threshold varies for different structures, column loss scenarios, and the cost multipliers 

employed. It is also found that designing by a discretionary column removal is only beneficial if the column loss 

probability is higher than this threshold.  
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1  Introduction 

A series of extraordinary events leading to partial or full structural collapses are recorded, such as the gas 

explosion at Ronan Point Tower (UK, 1968), the construction accident at Skyline Plaza (US, 1973), terrorist 

attacks like those at Oklahoma City (1995) and World Trade Center (NY, 9/11, 2001), and earthquakes like the 

one at Wenchuan (China, 2008). Even though the abnormal loads generated by these events have very large impact, 

they have very low probabilities of occurrence, so structural elements are not usually designed to withstand them. 

Instead, the structural system is designed to withstand the loss of individual elements due to such actions [1]. The 

probability of collapse of a structure under multiple hazards is evaluated as: 

 𝑝𝑐 = 𝑃[𝐶] = ∑ ∑ 𝑃[𝐶|𝐿𝐷, 𝐻]
𝐿𝐷

𝑃[𝐿𝐷|𝐻] 𝑃[𝐻]
𝐻

 (1) 

where 𝑃[𝐻] is the probability of hazard occurrence; 𝑃[𝐿𝐷|𝐻] is the conditional probability of local damage for a 

given hazard 𝐻; 𝑃[𝐶|𝐿𝐷, 𝐻] is the conditional probability of collapse for a given local damage 𝐿𝐷 and hazard 𝐻. 

In Eq. (1), the sum over 𝐻 indicates the multiple hazards the structure is exposed to, such as loads due to vehicular 

collisions, explosion, fire and terrorist attacks, while the sum over 𝐿𝐷 represents the different initial damage states 

the structure can experience, such as local damage, internal/external column loss, penultimate column loss, etc.  

The three basic approaches used in order to mitigate the risk against progressive are: controlling the hazard 

or its rate of occurrence (𝑃[𝐻]); controlling or limiting the local damage (𝑃[𝐿𝐷|𝐻]); or controlling or limiting the 

damage propagation, which  is related to the total or partial structural collapse (𝑃[𝐶|𝐿𝐷, 𝐻]). 

Reducing the rate of occurrence of extreme loading events (𝑃[𝐻]) generally requires non-structural 

interventions, such as controlling the personal inside the building, construction of physical barriers to deter vehicle 

impact, education and training, and others. Controlling 𝑃[𝐿𝐷|𝐻] involves measures to strengthen the structural 

element directly affected by the extreme event. However, there is a very large uncertainty surrounding abnormal 
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loads, so designing an element to withstand them is usually non-economical. Since these measures are addressed 

by risk analysis, both of them are out of the scope of this manuscript.  

Modern design codes [2-6] have adopted a damage-tolerant approach, where localized damages due to 

extreme actions are acceptable if the structural system has enough robustness. Therefore, the limiting 𝑃[𝐶|𝐿𝐷, 𝐻] 

approach is the most currently adopted. Since 𝑃[𝐶|𝐿𝐷, 𝐻] only involves structural analysis, this term can be 

controlled via redundancy, alternate load paths, compressive arch or catenary actions, structural fuses, 

segmentation, and others [7,8].  This term is also addressed by specific code requirements by load combinations 

for extraordinary loading events [4]: 

 𝜙 𝑅𝑚 ≥ 1.2 𝐷𝑛 + 0.5 𝐿𝑛  (2) 

where 𝑅𝑚 is the mean value of resistance, 𝐷𝑛 is the nominal dead load, 𝐿𝑛 is the nominal value for live load, and 

the load factors (1.2 and 0.5) were adjusted over the years from values derived by Ellingwood & Leyendecker [9]. 

The strength factor 𝜙 is considered herein as 𝜙 = 1, making the interpretation of optimal designs more 

straightforward. This design equation (eq. 2), alongside 𝑃[𝐶|𝐿𝐷, 𝐻], are the study objects of this manuscript. 

2  Formulation 

This work addresses optimal design of a continuous beam subject to usual gravity loads and to column loss 

scenarios. Normal loading condition can be considered as one particular hazard in Eq. (1), with 𝐻 = 𝑁𝐿𝐶 for 

“Normal Loading Condition” and 𝑃[𝑁𝐿𝐶] = 1. Since the normal loading condition does not lead to immediate 

local damage, probability of local or global collapse is evaluated directly as 𝑝𝐶 = 𝑃[𝐶|𝑁𝐿𝐶]. 

The two local damage (𝐿𝐷) conditions herein considered are Internal Column Loss (𝐼𝐶𝐿) and External 

column Loss (𝐸𝐶𝐿). The evaluation of 𝑃[𝐶𝐿|𝐻] and 𝑃[𝐻] involves a risk analysis addressing the structural purpose 

and its environment, which involves subjective and epistemic uncertainties, and many non-structural factors [10]. 

Therefore, the column loss probability, given herein as 𝑝𝐶𝐿 = ∑ 𝑃[𝐶𝐿|𝐻]𝑃[𝐻]𝐻 , is considered as an independent 

parameter in this manuscript, making the formulation threat-independent. By treating 𝑝𝐶𝐿 as an independent 

parameter, one can investigate the cost-benefit of designing for load bridging over lost columns, and find 𝑝𝐶𝐿  

thresholds for which column loss analysis has positive cost-benefit 

Column loss analysis is not required when the threat probability is smaller than the ℎ = 10−7 per year [11]. 

Thus, considering a design life of 𝑡 = 50 years, this is equivalent to 𝑝𝐶𝐿
𝑚𝑖𝑛 = ℎ × 𝑡 = 5 × 10−6. Therefore, 𝑝𝐶𝐿 is 

considered, in this paper, as an independent parameter ranging from 𝑝𝐶𝐿
𝑚𝑖𝑛  up to 1.  

Practical design measures, such as providing binding, ductility, structural fuses, compressive arch and 

catenary actions, are not addressed herein. This manuscript specifically addresses the cost-effectiveness of 

designing for load bridging under discretionary column removal, the ideal safety margins of design check 

equations (eq. 2), and the probabilities 𝑝𝐶𝐿 for which alternate load path analysis has positive cost benefit. This is 

accomplished by an additional partial factor 𝜆𝑃𝐶 in eq. (2): 

 𝜙 𝑅𝑚 ≥ 𝜆𝑃𝐶(1.2 𝐷𝑛 + 0.5 𝐿𝑛) (3) 

The initial construction cost is considered proportional to 𝜆𝑃𝐶, and is made non-dimensional by dividing by 

a reference construction cost (𝑅𝑚(𝜆𝑃𝐶 = 1)): 

 𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝜆𝑃𝐶) =
𝑅𝑚(𝜆𝑃𝐶)

𝑅𝑚(𝜆𝑃𝐶 = 1)
= 𝜆𝑃𝐶  (4) 

Consequences of structural collapse involve the cost of shut-down, costs for removing debris and rebuilding, 

damage to building contents and surroundings, injury, death, and environmental damage. Since only the cost of 

reconstruction depends on design safety margins, consequences are considered herein by an independent cost 

parameter 𝑘. Thus. monetary consequences of structural collapse are given as a non-dimensional cost multiplier 𝑘 

times the reference cost. This cost term is also made non-dimensional by dividing by the reference cost: 

 𝐶𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 = 𝑘 𝑅𝑚(𝜆𝑃𝐶 = 1)
1

𝑅𝑚(𝜆𝑃𝐶 = 1)
 = 𝑘 (5) 

The expected cost of collapse is given by the product of collapse cost and collapse probability. The total 

expected cost 𝐶𝑇𝐸 is obtained by multiplying each term of eq. (1) by the respective failure cost term [10]: 
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𝐶𝑇𝐸(𝜆𝑃𝐶) = 𝜆𝑃𝐶 + 𝑘𝑁𝐿𝐶  Φ[−βNLC(𝜆𝑃𝐶)] + 𝑘𝐼𝐶𝐿𝑝𝐼𝐶𝐿  Φ[−βICL(𝜆𝑃𝐶)]

+ 𝑘𝐸𝐶𝐿𝑝𝐸𝐶𝐿  Φ[−βECL(𝜆𝑃𝐶)] 
(6) 

where Φ[ ] is the standard Gaussian cumulative distribution function, 𝛽 is the reliability index, and 𝑝𝐼𝐶𝐿 and 𝑝𝐸𝐶𝐿 

are the column loss probabilities. In view of that, the risk optimization employed herein is given by: 

 

Find 𝜆𝑃𝐿
∗  

which minimizes 𝐶𝑇𝐸(𝜆𝑃𝐶) 

subjected to 𝜆𝑃𝐶 > 0 

(7) 

The cost-benefit analysis herein addressed focuses on the compromise between expected costs of collapse 

and costs of construction. Non-structural aspects are considered by the independent parameters 𝑝𝐼𝐶𝐿 and 𝑝𝐸𝐶𝐿 and 

cost multiplier 𝑘.  Following the Joint Committee on Structural Safety (JCSS) [12], a full cost-benefit analysis is 

recommended for 𝑘 ≥ 10. In this manuscript, the values 𝑘 = 10 and 𝑘 = 20 (mainly) are considered.  

Solution of the optimization problem in eq. (7) leads to the optimum design value 𝜆𝑃𝐶
∗ . This value represents 

the best cost-benefit that can be achieved in progressive failure analysis under column removal scenarios. Optimal 

cost-benefit cannot always be achieved, due to other structural and non-structural factors. In this regard, it is useful 

to define the terms “positive cost-benefit” and “negative cost-benefit”.  

 

if 𝐶𝑇𝐸(𝜆𝑃𝐶
𝑛𝑒𝑤) < 𝐶𝑇𝐸(𝜆𝑃𝐶), changing 𝜆𝑃𝐶  for 𝜆𝑃𝐶

𝑛𝑒𝑤 has positive cost-benefit   

if 𝐶𝑇𝐸(𝜆𝑃𝐶
𝑛𝑒𝑤) ≈ 𝐶𝑇𝐸(𝜆𝑃𝐶), changing 𝜆𝑃𝐶  for 𝜆𝑃𝐶

𝑛𝑒𝑤 has neutral cost-benefit    

if 𝐶𝑇𝐸(𝜆𝑃𝐶
𝑛𝑒𝑤) > 𝐶𝑇𝐸(𝜆𝑃𝐶), changing 𝜆𝑃𝐶 for 𝜆𝑃𝐶

𝑛𝑒𝑤 has negative cost-benefit 

(8) 

3  Implementation 

3.1. Statistics for design of conventional buildings 

This manuscript addresses cost-benefit analysis of a continuous beam, for which conventional load and 

strength statistics are widely available. Table 1 shows the load and resistance statistics employed herein, most of 

which have been used in past code calibration work [13,14].  

Table 1. Statistics used 

Variable Mean (𝜇) C.O.V. (𝜎/𝜇) Distribution Reference 

Yield strength of steel (𝑓𝑠) 1.28 𝑓𝑠𝑘  0.09 Normal [13] 

Model error - Resistance in 

bending of steel beams (𝑀𝐵) 
1.02 0.10 Normal [14] 

Plastic moment strength of steel 

beams (𝑍) - nondimensional 
1.30 0.12 Normal This paper. 

Dead load (𝐷) 1.05 𝐿𝑛 0.10 Normal [14] 

Live load, arbitrary point in time 

value, a.p.t. (𝐿𝑎𝑝𝑡) 
0.25 𝐿𝑛 0.55 Gamma [14] 

Live load, 50 year (𝐿50) 1.0 𝐿𝑛 0.25 Gumbel [14] 

3.2. Usual design 

Usual design of steel and RC buildings under gravity loads is given by: 

 𝜙𝑅𝑚 ≥ 1.2 𝐷𝑛 + 1.6 𝐿𝑛 (9) 

while the limit state function used for normal loading conditions, is: 

 𝑔𝑁𝐿𝐶(𝜆𝑃𝐶, 𝑿) = 𝑀𝐼𝑅𝐼(𝜆𝑃𝐶 , 𝑓𝑐 , 𝑓𝑦 , … ) − 𝐷 − 𝐿50 (10) 
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where 𝑅𝐼( ) is the strength function for the intact structure, 𝑀𝐼 is a non-dimensional strength model error variable, 

𝐿50 is the fifty-year extreme live load, and 𝑿 is the vector of random variables.  

3.3. Design for progressive collapse 

Under exceptional loading conditions, such as in column loss scenarios, the structural elements are designed 

according to eq. (2) and using mean resistance properties. Also, it is convenient to compare different solutions in 

terms of central safety factors, where the central safety for 𝑁𝐿𝐶 is: 

 𝜆𝑁𝐶𝐿 =
𝑅𝐼(𝜆𝑃𝐶 , 𝑓𝑐𝑚 , 𝑓𝑦𝑚 , … )

𝜇𝐷 + 𝜇𝐿50

 (11) 

The combination factor for live load 0.5 in eq. (2) is smaller than the 1.6 of eq. (9) since the damaged structure 

is not expected to withstand the 50-year extreme live load [7,8]. Therefore, the arbitrary-point-in-time live load 

(𝐿𝑎𝑝𝑡) is considered in column loss analysis, leading to the conditional limit state given as: 

 𝑔𝐶𝐿(𝜆𝑃𝐶 , 𝑿) = 𝑀𝐶𝐿𝑅𝐶𝐿(𝜆𝑃𝐶 , 𝑓𝑐 , 𝑓𝑦 , … ) − 𝐷 − 𝐿𝑎𝑝𝑡  (12) 

where 𝑀𝐶𝐿 is a non-dimensional strength model error variable, and 𝑅𝐶𝐿( ) is the strength function under column 

loss condition. In addition, the central safety factor under column loss condition is evaluated as: 

 𝜆𝐶𝐿 =
𝑅𝐶𝐿(𝜆𝑃𝐶 , 𝑓𝑐𝑚 , 𝑓𝑦𝑚 , … )

𝜇𝐷 + 𝜇𝐿𝑎𝑝𝑡

 (13) 

3.4. FOSM and FORM 

Collapse probabilities 𝑝𝐶  under normal loading or column loss conditions are evaluated as: 

 𝑝𝐶 = ∫ 𝑓𝑿(𝒙)𝑑𝒙
𝑔(𝜆𝑃𝐶,𝑿)≤0

 (14) 

where 𝑓𝐗(𝐱) is the joint density function of the random variable vector 𝐗. Under normal loading condition, 

𝑔(𝜆𝑃𝐶 , 𝐗) is given in eq. (10), while under column removal scenarios the limit state equation is given by eq. (12). 

In this manuscript, collapse probabilities are evaluated by the Cornell reliability index, which is a First Order 

Second Moment (FOSM) analysis, and by the First Order Reliability Method (FORM). FORM involves a 

transformation of the random variable vector 𝐗 and of the limit state functions 𝑔(𝜆𝑃𝐶 , 𝐗) to standard Gaussian 

space [15]. The design point is found by solving a constrained optimization problem, so the limit state function is 

linearized at this point. This leads to the failure probabilities, which are evaluated as: 

 𝑝𝐶 = Φ[−𝛽] (15) 

where 𝛽 is the Cornell (FOSM) or Hasofer-Lind (FORM) reliability index, corresponding to the distance from the 

design point to the origin of standard Gaussian space.   

4  Plastic design of continuous steel beam 

This manuscripit deals with a six-span continuous steel beam with the same rectangular cross section for all 

spans, as illustrated in Figure 1. Since the reliability problem has approximate analytical solution, this example is 

convenient in order to capture the essential aspects of the cost-benefit optimization problem for load bridging 

under column loss scenarios. The problem is solved for nominal live-to-dead load ratios of  𝐿𝑛/𝐷𝑛 = 1 and   

𝐿𝑛/𝐷𝑛 = 3. In addition, solutions are non-dimensional in terms of nominal material strength.  
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Figure 1. Bending moments on the beam subjected to a unitary distributed load for every loading condition. 

Usual static analysis yields the maximum bending moments factors for each of the loading conditions 

considered herein, which are 𝑚𝑁𝐿𝐶 = 0.106, 𝑚𝐼𝐶𝐿 = 0.274, 𝑚𝐸𝐶𝐿 = 0.5. A closed form solution for reliability 

index is obtained by considering resistance as the non-dimensional plastic modulus multiplied by plastic moment 

𝑧𝑃, and by approximating load distributions as Gaussian. This makes the limit state linear in Gaussian random 

variables.  The Cornell reliability index (FOSM) is written in terms of bending moment factors (𝑚) as: 

 
𝛽(𝜆𝑃𝐶 , 𝑚) =

𝐸[𝑔(𝜆𝑃𝐶 , 𝑋)]

√𝑉𝑎𝑟[𝑔(𝜆𝑃𝐶 , 𝑋)]
=

𝑧𝑝𝜇𝑍𝜆𝑃𝐶 − 𝑚(𝜇𝐷 + 𝜇𝐿)

√𝑧𝑝
2𝜎𝑍

2𝜆𝑃𝐶
2 + 𝑚2(𝜎𝐷

2 + 𝜎𝐶
2)

 
(16) 

For normal loading condition (𝛽𝑁𝐿𝐶), the fifty year extreme load (𝐿50) is considered in eq. (16). For column 

loss conditions, 𝛽𝐶𝐿  is obtained using 𝐿𝑎𝑝𝑡 . Regarding the FORM solution, it is obtained considering the actual 

probability distributions alongside the following limit states equations: 

 

𝑔𝑁𝐿𝐶(𝜆𝑃𝐶, 𝑋) = 𝑧𝑝𝑓𝑠𝑀𝐵𝜆𝑃𝐶 − 𝑚𝑁𝐿𝐶(𝐷 + 𝐿50) 

𝑔𝐼𝐶𝐿(𝜆𝑃𝐶 , 𝑋) = 𝑧𝑝𝑓𝑠𝑀𝐵𝜆𝑃𝐶 − 𝑚𝐼𝐶𝐿(𝐷 + 𝐿𝑎𝑝𝑡) 

𝑔𝐸𝐶𝐿(𝜆𝑃𝐶 , 𝑋) = 𝑧𝑝𝑓𝑠𝑀𝐵𝜆𝑃𝐶 − 𝑚𝐸𝐶𝐿(𝐷 + 𝐿𝑎𝑝𝑡) 

(17) 

4.1. Results for 𝑳𝒏 = 𝑫𝒏 = 𝟏 using Cornell index 

Usual elastic design of the continuous beam, using eq. (9) with 𝜙 = 0.9, 𝐿𝑛 = 𝐷𝑛 = 1 and unitary nominal 

strength leads to a required plastic section modulus 𝑧𝑃
0 = 1.5 𝑧𝐸

0 = 0.49 (and 𝜆𝑁𝐿𝐶
0 = 2.96), which does not comply 

with eq. (2) for column loss scenarios.  

The same probability is assumed for internal and external column loss events: 𝑝𝐼𝐶𝐿 = 𝑝𝐸𝐶𝐿 = 𝑝𝐶𝐿, and results 

are computed for failure cost multiplier 𝑘 = 20. Figure 2 shows the total expected cost objective functions for the 

continuous beam design for different column loss probabilities. Total expected cost functions grows for large 𝜆𝑃𝐶 

as a consequence of over-conservative design, and also grows very fast for small 𝜆𝑃𝐶 due to cost of collapse failure. 

It can be observed in Fig. 2 that column loss probabilities 𝑝𝐶𝐿 have a great impact in objective functions. For  

𝑝𝐶𝐿 = 1 and 𝑝𝐶𝐿 = 0.1, the objective functions are dominated by expected cost of failure in column loss scenarios, 

and optimal values of 𝜆𝑃𝐶 are around or greater than one. For 𝑝𝐶𝐿 = 𝑝𝐶𝐿
𝑚𝑖𝑛 , column loss has insignificant impact 

on total expected costs, and the optimum design (for 𝜆𝑃𝐶 = 0.46) is close to the usual design, under normal loading 

condition, since 𝜆𝑁𝐿𝐶
0 = 2.96 and 𝜇𝑍 × 𝜆𝑁𝐿𝐶 × 𝜆𝑃𝐶/𝜙 = 1.3 × 3.91 × 0.46/0.9 = 2.60.  
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Figure 2. Total expected costs for 𝑘 = 20 and different column loss probabilities 

Figure 2 also shows that for 𝑝𝐶𝐿 = 0.02 the objective function becomes flat over a significant range of 𝜆𝑃𝐶 

values, going from 0.5 to almost 1.0. In this region, the optimal design is indifferent to 𝜆𝑃𝐶 due to a trade-off 

between designing for column loss and for normal loading conditions. Therefore, designing for load bridging under 

discretionary column removal has positive cost-benefit only when column loss probability is above a threshold 

value 𝑝𝐶𝐿
𝑡ℎ. This threshold 𝑝𝐶𝐿

𝑡ℎ is herein defined as the value for which design for load bridging under discretionary 

column removal has neutral cost-benefit, in comparison to usual design. 

When column loss probability is larger that this threshold, design for discretionary column removal has 

positive cost-benefit. For 𝑝𝐶𝐿 < 𝑝𝐶𝐿
𝑡ℎ , column loss design has negative cost-benefit, meaning that the higher 

constructions costs are not expected to be recovered during the structure lifespan. In addition, for 𝑘 = 20, the 

column loss probability threshold is 𝑝𝐶𝐿
𝑡ℎ = 0.02, but if 𝑘 = 10 is considered, 𝑝𝐶𝐿

𝑡ℎ = 0.04. This means the threshold 

value varies for different structures, different column removal scenarios, and costs multipliers.  

4.2. Results for 𝑳𝒏 = 𝟑𝑫𝒏 = 𝟑/𝟐 using Cornell index and FORM 

Since the standard deviation of live loads (𝐿) is much greater than the standard deviation of 𝐷,  the design 

for progressive collapse changes significantly by considering 𝐿𝑛/𝐷𝑛 = 3. Usual elastic design of the continuous 

beam, using eq. (9) with 𝜙 = 0.9 and 𝐿𝑛 = 3𝐷𝑛 = 3/2, leads to a required plastic section modulus of 𝑧𝑃
0 =

1.5 𝑧𝐸
0 = 0.53 (and 𝜆𝑁𝐿𝐶

0 = 3.21).  

Figure 3 shows the total expected cost objective functions for 𝑘 = 20 and for different column loss 

probabilities (𝑝𝐶𝐿). Results are computed using the Cornell (FOSM) and Hasofer-Lind (FORM) reliability indexes. 

For this problem, live load uncertainty has greater importance in computed reliabilities. Nevertheless, results 

obtained using the Cornell reliability index and FORM are similar.  

 

Figure 3. Total expected costs for 𝐿𝑛 = 3𝐷𝑛 = 3/2 and 𝑘 = 20, FOSM (shaded lines) x FORM (darker lines). 
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Similarly to 𝐿𝑛/𝐷𝑛 = 1, the threshold probability is also around 𝑝𝑡ℎ ≈ 0.02. However, for 𝑝𝐶𝐿 = 𝑝𝑡ℎ ≈ 0.02 

and 𝐿𝑛 = 3𝐷𝑛 the objective function does not show the flat plateau observed in Fig. 2. Still, it is noticed that the 

optimal design is almost indifferent to 𝜆𝐶 in the range 0.55 ≲ 𝜆𝐶 ≲ 0.8. Nevertheless, the flat plateau of Fig. 3 is 

not observed since the uncertainty in live load plays a more important role, which “competes” with 𝑝𝐶𝐿. 

5  Conclusions 

In this paper, a proposed formulation for the risk-based cost-benefit analysis of progressive collapse of frame 

structures under column removal scenarios is applied in a continuous beam while considering an objective function 

that combines construction costs with expected costs of failure. Not only column loss probability shows significant 

impact on the total expected cost functions, a threshold value of column loss probability 𝑝𝐶𝐿
𝑡ℎ is noticed, for which 

optimal design for load bridging under discretionary column removal has neutral cost-benefit. Therefore, design 

for load bridging under discretionary column removal has positive cost-benefit only when column loss probability 

is above the threshold 𝑝𝐶𝐿
𝑡ℎ. The column loss probability threshold 𝑝𝐶𝐿

𝑡ℎ varies for different structures, for different 

column removal scenarios, for different reinforcement actions and as a function of failure cost multiplier. For a 

reference value 𝑝𝐶𝐿
𝑡ℎ ≈ 0.01 and a lifetime of 50 year, column loss probability corresponds to an annual rate of 

column loss ℎ𝐶𝐿
𝑡ℎ = 2 × 10−4 for 𝑃[𝐶𝐿|𝐻] = 1. Such value is one to two orders of magnitude larger than the hazard 

rates for common threats (10−6 to 10−5 occurrences per year). Therefore, it may not be cost-effective to design 

frames for load bridging over lost columns for hazard rates smaller than ℎ𝐶𝐿
𝑡ℎ = 2 × 10−4 per year. Based on results 

presented in this manuscript, it is also suggested that design factors for exceptional loading could be differentiated 

according to column loss probability.  
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