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Abstract. The assessment of time-dependent reliability problems is still a challenging task. Besides the difficulty
to characterize a problem from real-world data, most of known solutions rely on approximations suitable only
for specific cases or on burdensome simulation approaches. This is due to the difficulty in working with gen-
eral stochastic processes, particularly for situations of non-ergodicity. A time-series model is a particular case of
stochastic process that operates in continuous state space and discrete time set. Such models can be used to repre-
sent a wide range of random phenomena that spans through time, usually with simpler formulation. They are also
relatively simple to build from data tables, which are usually all the information available about time-dependent
behavior of random engineering systems. This work presents a preliminary study where data generated from con-
tinuous stochastic processes commonly used in structural reliability are used to build different time-series models,
which are then used to replace the original stochastic process in reliability analysis. Auto Regressive, Moving Av-
erage and Auto Regressive Moving Average models are considered. The same time-dependent reliability problem
is solved considering each case, and details about the solutions are addressed.
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1 Introduction

Structural design is usually guided by normative codes, which in most cases assess structural safety via semi-
probabilistic procedure. Although this suffices for most practical cases, such approach does not allow for failure
probability quantification, an utmost important information in order to design optimal structures, whose safety
is guaranteed at the same time that monetary costs and environmental impact are minimum. Time-independent
structural reliability analysis provides a more general framework. Quantities describing structural parameters and
load conditions are modeled as random variables, whose uncertainty is propagated trough mechanical models in
order to quantify its output uncertainties (e.g. stresses, strains, displacements), so that failure probabilities can be
calculated. Although the task can be demanding, several approaches have been proposed to efficiently address this
problem (see for example Santos and Beck [1] and Kroetz et al. [2]). Despite being a relevant step forward, time-
independent reliability disregards time-fluctuation in its parameters. Natural hazards usually span trough time with
varying intensity, thus being better characterized by stochastic processes. Unfortunately, complete information
about these phenomena is seldom available. In order to build a time-dependent reliability analysis, one usually
has limited information, arising from point-wise measurements, for example, environmental conditions parameters
obtained in a meteorological station.

In time-dependent reliability analysis, time-varying parameters are usually modeled as classical continuous
stochastic processes (e.g. Gaussian and Wiener processes), whose sampling in general involves the spectral de-
composition of auto-correlation matrices. On the other hand, fewer works about reliability point to a tentative of
describing time-dependent random parameters using auto-regressive time-series models. These are particularly
suited for modeling stochastic behavior from discrete data obtained in regular intervals of time, in this context
called lags. As an advantage, auto regressive models are usually of simpler formulation, which allows for lower
computational burden and could lead to easier derivation of future time-dependent reliability techniques. In this
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paper, we test the applicability of three different time-series models by solving a reliability problem with each
model built from the same data set, and compare the results.

2 Time Series Analysis

Time series analysis is the employment of statistical techniques in order to understand the behavior of a
variable from a set of observations on the values that it assumes at different times. In time series analysis, time-
dependent behavior of a system is characterized and separated from its random fluctuation, so that one can exploit
the knowledge of each part in order to forecast its future behavior. In this sense, it can be understood as a bivariate
analysis where time is the independent variable [3].

Although technically any stochastic process can model a time-series, the term ”time-series model” is usually
employed in reference to econometric models that deal with a few past realizations of the variable of interest to
predict its future values. Such models have been used in different applications regarding reliability in the works
of Walls and Bendell [4], Ho and Xie [5], Billinton and Wangdee [6], Li et al. [7], among others. It can be
concluded that time-series models are adequate for reliability analysis. Despite that, none of these works deal
with the computation of small values of failure probability. This is a key aspect in structural reliability, since
many problems still require the usage of Monte Carlo simulation. It is well known that the main drawback of
this technique is the excessive computational burden associated with low order of magnitude failure probabilities.
An early work by Mignolet and Spanos [8] have addressed the potential applications of such models in structural
reliability analysis, concluding that autoregressive moving average models can be suitable for describing time-
dependent loads caused by phenomena like ocean waves and earthquakes. To the best knowledge of the authors,
literature lacks a study about the impacts of replacing classical continuous stochastic processes by time series
models in structural analysis.

3 Time Series Models and Prediction

3.1 Autoregressive model (AR)

One of the most simple yet powerful tools in time series analysis is the representation of a variable of interest
through autoregressive models. As the name suggests, it consists in forecasting a variable considering its own past
values, or performing a regression of the variable of interest against itself. [9]. The model degree p represents
the number of lags considered in the regression (i.e. the number of past values considered, spaced by the constant
amount of time called lag). A general autoregressive model of degree p is represented by AR(p), and can be written
as shown in Equation 1:

lt = β0 + β1lt−1 + β2lt−2 + · · ·+ βplt−p + εt, (1)

where i counts the lags, lt is the current value of the variable of interest l, βi is a constant for i = 0 and represents
the partial autocorrelation between lt and lt−i for i > 0 and εt is the unpredictable error in current prediction,
usually modeled as white noise. Since each lag term will have different impact on the prediction of current term, a
reasonably good prediction can be built disregarding the lags whose partial autocorrelation are low (arbitrarily close
to zero). Several techniques can be used to determine the AR model’s coefficients, including Burg’s lattice-based
method and variations [10] and Yule-Walker estimates [11]. In this work, least-squares regression is adopted.

3.2 Moving average model (MA)

Another useful model of simple general expression is the moving average model, represented by MA(q),
where q is the model degree [12]. It consists in representing the value of a time-dependent variable by weighting
the errors of previous time steps, so that predicted value deviates from the process’s mean by a linear combination
of the q previous errors. In this sense, the error is the difference between the true value of a random process in an
instant and its correspondent prediction. In MA forecasting, the error term is modeled as white noise. A general
expression for MA(q) is given by Equation 2:

lt = µ+ φ1εt−1 + φ2εt−2 + · · ·+ φqεt−q + εt, (2)

MA(q) models in general present non zero autocorrelation for the first q lags, whilst zero for other lags. Thus,
observing the correlogram of the data series from which the model will be built can provide useful information
about how many terms it should have. As a rule of thumb, one can choose de model’s degree as the number
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of terms where the correlation function is sufficiently large, neglecting terms where the correlogram is close to
zero. The estimation of MA(q)’s coefficients classically involves a transformation from the original model to a
correspondent AR(∞) model, which is then truncated and has its coefficients determined by one of the aforemen-
tioned techniques. The MA(q) are then estimated considering the relationship between both models. In this work,
parameter estimation is performed automatically with the help of matlab ARIMA model from its Econometric
toolbox.

3.3 Autoregressive moving average model (ARMA)

An ARMA model is a combination of an autoregressive model and a moving average model, so that both
past values of the variable of interest and past prediction errors are combined in prediction. The adopted notation
is inherited from individual models: an ARMA(p, q) is composed by an autoregressive model of degree p and a
moving average model of degree q. A general expression is given by Equation 3:

lt = β0 + β1lt−1 + β2lt−2 + · · ·+ βplt−p + φ1εt−1 + φ2εt−2 + · · ·+ φqεt−q + εt (3)

The order of each part of an ARMA model is usually chosen using the Bayesian Information Criterion, which is
basically an adaption from maximum likelihood estimation, where a modified likelihood function is maximized
for each of several candidate models with different number of parameters, so that the best one is chosen [13]. This
leads to the construction of L2 candidate models, where L = pmax + qmax is the sum of the maximum admitted
degree for each part of the model. This could lead to excessive evaluations, and more simplistic approaches are
often adopted, for example, choosing the optimum model only from a subset where p = q. This assumption
usually has little influence on the average quality of selected ARMA models, since the loss caused by not having
the best ARMA(p, q) model between the candidates is compensated by the fact that selection from a small number
of candidates is more accurate [14]. Hence, the latter approach is adopted in this work.

4 Time-dependent Reliability Analisys

In most structural reliability problems uncertainties are modeled as random variables, so that a time-independent
analysis is performed in order to determine structural probabilities of failure. However, when loads and structural
integrity vary significantly in time (e.g. due to strength degradation or structural repair), it is convenient to study
the evolution of failure probabilities in time. In this context. a cumulative probability of failure Pfc(t1, t2) is
considered to compute the probability of violating a certain limit at any point of a given time interval [t1, t1]:

Pfc(t1, t2) = P (∃τ ∈ [t1, t2] : g(τ,X(τ, ω)) ≤ 0) . (4)

In this notation g is a limit state function of the random vector X . Although several analytical techniques have
been proposed in order to compute Pfc, they are mostly very limited or problem-specific (see Kroetz et al. [15]
for details). Thus, a general time-dependent Monte Carlo approach is adopted herein. Consider a time interval of
interest discretized in N points. Realizations of time-dependent variables, obtained from measurements or random
process discretization, are then used to compute a given limit state function for each point in time. Let these values
be gathered in an array G of length N . In this sense, deterministic quantities are constant throughout G, and so
are random variables after being sampled once. Thus each position i = 1, ..., N in G stores the value of a limit
state function in time ti = (i − 1) ·∆t, where ∆t = T

N−1 is the sampling step. For each time interval [ti, ti+1],
a counter ki+1 is defined. Let k be an array whose position ki+1 stores a failure counter that refers to the interval
[ti, ti+1], so that all counters kn, with n = i+ 1, . . . , N are increased whenever the limit state is violated for the
first time (i.e. all the remaining counters after the outcrossing are increased). A brute Monte Carlo estimation for
the cumulative probability of failure until an arbitrary instant ti, i.e. PfcMC

(0, ti), is given by:

PfcMC
(0, ti) =

ki + k0
NMC

, (5)

where k0 counts the number of failures at t = 0. Since this general approach relies only in point-wise evaluation
of limit states, any time-series model can be used as input, allowing for the comparison between performance of
different time-series models.

5 Comparison of Time Series Models

Consider the time-dependent reliability problem of a degrading steel bending beam, whose length is L = 5m
and rectangular cross-section (b0, h0). This beam is submitted to dead loads ρst = b0h0(Nm−1), as well as a
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pinpoint load F applied at midspan (See Figure 1). This example is based on the problem proposed by Sudret [16].

Figure 1. Corroded beam under a midspan load

The structure is subject to corrosion, in such a way that corrosion depth dc all around the section increases
linearly in time (dc = κt). It is assumed that the corroded areas have lost all mechanical stiffness. The limit state
function associated with the formation of a plastic hinge is described by Equation 6:

g(, t,X) =
(b0 − 2κt)(h0 − 2κt)2fy

4
− (

FL

4
+
ρstb0h0L

2

8
), (6)

where the random variables are detailed in Table 1, and F is a time-variant load described by a Gaussian stochastic
process of mean µ = 6kN and coefficient of variation cov = 0.3.

Table 1. Corroded bending beam – random variables and parameters

Parameter Distribution Mean COV

Steel yield stress (fy) Lognormal 240MPa 10%

Beam breadth (b0) Lognormal 0.2m 5%

Beam Height (h0) Lognormal 0.04m 10%

Consider now that F is an environmental load, and instead of actually knowing its properties, all there is
available is a historical series of intensity measurements. In this example, a table is built by monthly discretization
of the original process via the EOLE method [17] for a 10 years time span. The information obtained from a single
sample is used as input for constructing the time-series models. After sampling, the autocorrelation (ACF) and
partial autocorrelation (PACF) functions are plotted in correlograms for the first ten lags, as shown in Figure 2.
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Figure 2. Autocorrelogram and Partiral Autocorrelogram for old sample.

A qualitative analysis of the correlograms suggests that a 2nd order MA model could be adequate, since lags
have smaller autocorrelations after that. The same conclusion can be drawn for the AR model from the study of
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the partial autocorrelation function. Thus AR(2), MA(2) and ARMA(2, 2) model are used in this example. The
problem is solved as described in Section 4 for each constructed model, and also considering the original process to
serve as reference. In all cases, 106 Monte Carlo samples are used. Results are gathered in Table 2 and illustrated
in Figure 3.
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Figure 3. Cumulative failure probabilities for models built from a single sample

Table 2. Results for single sample

Model Pfc error

Ref 0.1055 −

AR(2) 0.1139 7.9%

MA(2) 0.1117 5.9%

ARMA(2,2) 0.1387 31%

Although the general behavior of failure probability evolution seems to have been captured by the models, a
considerable error is observed in simulations. This does not necessarily mean that the models are bad, since they
could be adequately representing information from a sample that itself is not a good representation of the original
stochastic process (the sample presented e mean of 6105N and a standard deviation of 1788N). In order to test that,
more samples were taken, until a sample whose mean and standard deviation significantly close to the original was
obtained (errors not larger than 0.1% were admitted). Rebuilding the models considering a better quality sample,
results were significantly improved, as can be seen in Table 3 and Figure 4.

6 Conclusion

In this work AR, MA and ARMA time-series models have been tested in the context of structural reliability.
The models were employed in a benchmark problem whose original solution involves classical expansion of ran-
dom process discretization. Accurate results were obtained, particularly when simulated empirical data reflected
the underlying stochastic process characteristics. Results suggest that time-dependent structural reliability prob-
lems can be treated with simpler models than classically employed continuous stochastic processes. Although
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Figure 4. Cumulative failure probabilities for models built from good quality sample

Table 3. Results for better quality sample

Model Pfc error

Ref 0.1055 −

AR(2) 0.1035 1.9%

MA(2) 0.1104 4.6%

ARMA(2,2) 0.1054 0.1%

errors tend to accumulate in time, a larger data set tends to hold more representative mean and standard deviations,
what leads to smaller errors. Since general time-dependent reliability problems must rely on burdensome Monte
Carlo simulation, the usage of simpler models may help in the future not only in reducing computation time, but
also in the development of new solution approaches.
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