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Abstract. Reinforcement’s corrosion is the main cause of durability reduction in reinforced concrete structures. 

Besides, the chloride ingress is the main agent in this problem. The reinforcement’s corrosion process occurs in 

two stages: in the first, known as the initiation period, chloride ions penetrate into concrete pores and accumulate 

at the concrete/reinforcement interface, which lead to the depassivation when the threshold concentration is 

reached. After the depassivation, the propagation period starts, which triggers the reinforcement’s corrosion and 

the structural collapse. Because of the faster structural safety reduction observed in the latter stage, the initiation 

period is often adopted as structural service life. In this regard, this study applies the two-dimensional transient 

formulation of the Boundary Element Method (BEM) for the chloride diffusion modelling. Because of the non-

requirement of the domain mesh, the chloride concentrations at the domain are accurately assessed. Moreover, this 

problem is properly analysed solely in the probabilistic context because of the huge randomness over the governing 

variables. The Monte Carlo Simulation assesses the probabilities of failure herein, which accounts for the failure 

scenarios described by the BEM. In addition to the phenomenological random variables, cracks positioned at the 

cover account for the inherent concrete cracking and describe preferential ingress paths. 
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1  Introduction 

The concern with structural durability is intrinsically related to the safety of the structure and its users. In addition 

to the safety aspects, another factor reinforces this concern: the economic. In developed or developing countries, 

the monetary losses due to the rehabilitation of structures deteriorated by corrosion revolve around 1.25% to 3.5% 

of the country's GDP (Gross Domestic Product) [1]. In the case of reinforced concrete (RC) structures, corrosion 

may significantly influence the long-term performance, especially in aggressive environments. Chlorides ions, in 

particular, increase the electrical conductivity of the electrolyte, accelerating the corrosion process and destroying 

the passive film on the reinforcement (called depassivation of steel reinforcement), causing pitting corrosion, 

which presents a high risk for RC structures [2]. Diffusion is one of the main mechanisms for transporting chloride 

ions through concrete [3,4], being diffusion models predominating in the literature. It is also recognized that cracks 

provide easy access to ingress of chlorides in concrete and affect its durability properties with most significant 

effect on the depassivation of reinforcements, reducing the corrosion initiation time [5,6]. According to Zhang et 

al. [7], disregarding concrete cracking can lead to an overestimation of the service life of a structure. 

There are several methodologies for evaluating the initiation period. However, many of them present huge 

restrictions and strong simplifications in their modelling assumptions. These comments are particularly valid for 

analytical approaches, which stimulated the development of numerical schemes. The Boundary Element Method 

(BEM) is a numerical method capable of representing accurately the chloride diffusion into concrete pores. Despite 

this approach has not been widely used for this purpose, the BEM has considerable advantages over other 

numerical approaches, such as discretization applied solely at the geometry boundary and reduction in one 

dimension of the mesh in relation to the dimension of the problem, which reduces the number of degrees of 
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freedom and the system of equations. For its considerable advantages, this study applies the transient BEM 

formulation for analysing the corrosion initiation triggered by chloride diffusion into two-dimensional cracked 

structures. The subregion BEM technique enables the representation of dissimilar materials and cracks. Besides, 

the uncertainties of the phenomenon of diffusion are quantified herein through the Monte Carlo Simulation 

technique. One application demonstrates the robustness of the proposed approach, which may suggest fair values 

for cover depth as a function of the probability of failure. 

2  The Transient Boundary Element Method 

2.1 Integral equation for potential problems 

The transient potential problem utilises the following diffusion equation: 

 2 1
0,

u
u
k t

 (1) 

where u is potential, t is time and k is the diffusion coefficient. According to Wrobel [8], the problem definition is 

completed with the specification of boundary conditions in potential (u ) and flux (q ), respectively: 
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and initial conditions: 

 0( , ) ( , ) ,u x t u x t x  (3) 

in which u  is the prescribed potential value, q  indicates the prescribed flux value, x  is the field points, 0t  the 

initial time, 1 2  represents the boundary and  the problem domain. 

Equation (1) leads to a boundary integral representation by applying the Time-Dependent Fundamental Solution 

available in Wrobel [8]. Assuming as nil the initial condition in the domain, this approach provides the following 

equation, in which temporal and spatial integration are required [8]: 
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where indicates the source points (points where the potential or flux is applied), Ft  the observation time, 𝑢∗ and 

𝑞∗ are the time-dependent fundamental solutions for potential and flux, respectively, and 𝑐 is the BEM free term. 

In the cases where the source point is positioned at smooth boundary geometries, the value of c equals 0.5. For 

two-dimensional problems, the time-dependent fundamental solutions are as follows: 
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in which Ft t , and r indicates the distance between the source point and the field point. 

2.2 Numerical solution 

The Equation (4) can be rewritten by inverting the order of integration and dividing the boundary of the problem 

into Ne boundary elements and the time 0Ft t  into NT time steps. Thus: 
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where NT
iu is the value of the potential in the source point i at time t NT , 0

nt  and nFt  are, respectively, the 

initial and last time in the step time n. Assuming that source points have been positioned at smooth boundaries and 

the values of nu  and nq  are constant in each time step, the previous equation can be rewritten as follows: 
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The system of algebraic equations is obtained by applying Equation (8) for every boundary node. This system can 

be written in terms of classical BEM matrices G and H, which contains, respectively, the kernels *u and *q [9]: 

 1 1

1 1

{ } { },
NT NT

NT n n NT n n

n n

G q H u  (11) 

where { }q  and { }u are vectors of flux and potential, respectively at the boundary. The solution of Equation (11) 

requires the classical columns change procedure, which enables the vector of known { }NTf  and unknown { }NTx
quantities at the boundary at each time step. This procedure leads to the columns change between matrices G and 

H of the first time step, providing matricesA andB , which are used in the solution of the entire problem, according 

to Equation (12) [9]. 
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The singular kernels in Equation (9) and (10) have been regularized by the Singularity Subtraction Technique 

whereas the non-singular kernels have been integrated by the Gauss-Legendre quadrature. 

3  The subregion technique 

The above BEM formulation is valid only for homogeneous domains. This limitation can be avoided by 

introducing the subregion technique, which allows for incorporating materials with different diffusion coefficient. 

The technique was proposed by Rizzo & Shippy [10] and consists of discretising the nonhomogeneous domain 

into homogeneous regions, known as subregions, where the continuity between them is enforced by applying the 

compatibility of potential and equilibrium of fluxes. Thus: 

 ,S Z
i iu u  (13) 

 ,S Z
i iq q  (14) 

in which i  indicates the node positioned at the interface of adjacent subregions S  and Z , with S Z .  
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Considering a problem defined over a domain which is only piecewise homogeneous, the Eq. (9) and Eq. (10) are 

applied to each subregion independently. Then, matrices G and H of each subregion, obtained independently, are 

strategic allocated in order to provide global matrices for the entire domain. Also vectors { }u  and { }q are 

manipulated to store the quantities at the boundary of each subregion. Nevertheless, this system of equations is 

undetermined because both potential and flux are unknown for each node positioned at the interfaces. By 

introducing Eq. (13) and Eq. (14), the final system of equations becomes determined and the domain continuity is 

re-established. Then, the numerical procedure for solving the final system can be performed through Eq. (12). 

The subregion technique can also be applied to represent co-planar crack surfaces in homogeneous or 

nonhomogeneous bodies. In this approach, artificial boundaries are introduced in the domain for dividing the 

cracked body into subregions, where each subregion containing one crack surface [11]. Then, Eq. (13) and Eq. 

(14) represent the closed crack faces conditions and the crack surfaces are external boundaries. It is worth stressing 

that the crack width is not required and any additional equation is not introduced to this approach. 

4  The Monte Carlo Simulation  

The Monte Carlo Simulation (MCS) is a numerical simulation technique developed by Metropolis & Ulam [12], 

which uses sequences of random numbers with uniform distribution between 0 and 1 for indicating the Probability 

Density Function 𝑓𝑋(𝑥) value of each random variable. In structural engineering applications, the MCS usually 

assesses the probability of failure (𝑃𝑓) of complex structures and structural systems subject to randomness. The 

failure scenarios are evaluated through the limit state equation, in which an indicator function [ ]I x  assigns a 

unitary value if x  belongs to the failure domain or zero, otherwise. By definition:  

 [ ] ( ) .f XP I x f x dx   (15) 

The above equation can be estimated using a finite number of samples ( 𝑛𝑆), according to:  
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in which  𝑛𝑓 is the number of samples in the failure domain and  𝑃̂𝑓 is the estimated probability of failure. Thus, 

the direct result of MCS is the probability of failure. However, it is possible to obtain an equivalent reliability 

index ( ) through the distribution function of standardized normal distribution ( ): 

 1 ˆ( ).fP   (17) 

The MCS is widely associated with BEM, since the BEM has recognized computational efficiency and accuracy 

in several engineering problems. In this study, the BEM provides the concentration of chloride ( , )C x t  at concrete 

cover depthx and time t . From a known chloride threshold content value (𝐶𝑟), the MCS accesses the probability 

of failure by the following limit state equation (G ): 

 ( , ) ( , ).rG x t C C x t   (18) 

The chloride threshold has been often represented by a deterministic value, which is obtained accounting for the 

class of environmental aggressiveness and concrete composition. Nevertheless, this quantity has important 

randomness behaviour, which suggests that  𝐶𝑟 should be randomly modelled instead of deterministically. 

5  Numerical example 

This application presents the corrosion time initiation analysis of a typical cross-section from a reinforced concrete 

beam. One assumes the structure as positioned along the coastal zone, being exposed to chloride ions (𝐶𝑙−) on its 

side and bottom boundaries. The upper boundary has been covered by a resin, which prevents the chloride ingress 
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from that position. Then, flux is nil along the upper boundary, as illustrated in the fig. 1a. The cross-section 

dimensions are 300 mm x 480 mm and it has been reinforced with eight rebars of diameter 𝜙 = 25 mm (fig. 1b). 

Shaikh [6], suggests the formation of cracks are unavoidable along the concrete because of its low tensile strength. 

Then, co-planar cracks have been incorporated in the present analysis. These cracks have been positioned in the 

traction zone of the cross-section (fig. 1c), which length reaches 20 mm of the concrete cover. This application 

assesses the probability of failure associated with depassivation of reinforcements for a service life of 60 years. 

Besides, four values of concrete cover depth (C) have been considered: 35 mm, 40 mm, 50 mm and 60 mm. 

 
 

Figure 1. (a) Geometry and boundary conditions, (b) Cross-section dimension, (c) Crack positions 

Three parameters are random in the present analyses: concentration of surface chloride (C0), threshold chloride 

content (𝐶𝑟) and the diffusion coefficient of chloride in concrete (kc). The statistical properties attributed to C0 

account for regions distant less than 0.1 km from the coastal zone [13] and kc is a function of the water/cement 

ratio (w/c), which has been assumed as 0.4. Table 1 presents such statistical information. 

Table 1. Statistical parameters of random variables 

Parameter Mean COV1  Distribution Reference 

C0 2.95 Kg/m³ 0.70  Lognormal McGee [13] 

𝐶𝑟 0.90 Kg/m³ 0.19  Uniform Stewart & Rosowsky [3] 

kc (w/c=0.4) 4.5E-13 m²/s 0.75  Lognormal Papadakis et al. [14] 
1COV, Coefficient of Variation. 

The cross-section has been discretised with isoparametric lagrangian elements of quadratic approximation. The 

number of elements and degrees of freedom (DOF) considered herein are upon Table 2. It is worth stressing that 

the cross-section with cracked cover has been divided into 10 subregions. In addition, each rebar has been 

represented by a circular hole of 25 mm diameter, whose discretisation is composed of 8 isoparametric elements 

of quadratic approximation and 17 nodes. Nil flux conditions has been assumed along the reinforcements 

boundaries because the coefficient of diffusion of steel is small in comparison to concrete. Therefore, the problem 

has homogeneous domain, which justifies the adoption of a single diffusion coefficient. 

The time has been discretised in 2 years time-span and 10 integration points carried out the kernels integrations. 

A deterministic analysis demonstrated convergence with these settings. One assumed the mean values presented 

in Table 1 and a reference model constructed via ANSYS [15]. The Finite Element Method (FEM) from ANSYS 

utilised the triangular elements PLANE 77. The mesh details from ANSYS are upon Table 2. Figure 2 illustrates 

the evolution of the chloride concentration along time for the most requested point on the first layer of 

reinforcements. The curves illustrated in this figure demonstrate the good agreement among the responses achieved 

by BEM and FEM. Then, 30 time steps and 10 integration points are sufficient for the numerical BEM solution. 
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Table 2. Number of elements (and DOF) in the boundary mesh (BEM) and domain mesh (ANSYS) 

Cover [mm] 
Uncracked cross-section         Cracked cross-section 

     BEM              ANSYS         BEM               ANSYS 

35   90 (384)        3,010 (12,466)      138 (660)       3,096 (12,810) 

40   90 (384)        3,030 (12,546)      138 (660)       3,052 (12,634) 

50    90  (384)        3,024 (12,522)      138 (660)       3,062 (12,674) 

60   90 (384)        3,024 (12,522)      138 (660)       3,074 (12,722) 

   

Figure 2. Chloride content as a function of time in a) uncracked and b) cracked cross-section 

In the MCS, 10,000 samples were adopted, which lead to convergence in previous analyses. Figure 3 illustrates 

the probabilities of depassivation evolution as a function of time, which accounts for Eq. (18) at different scenarios. 

  

Figure 3. Probability of depassivation with cracked and uncracked cross-section 

Figure 3 illustrates that the concrete cover depth has a huge influence on the probability of depassivation. At 50 

years, time usually assumed as the average service life of reinforced concrete structures, such probability resulted 

66.73%, 56.45%, 37.17% and 23.17%, respectively, for the uncracked covers of 35 mm, 40 mm, 50 mm and 60 

mm. Besides, the probability of depassivation is more critical in the cracked cover case and reaches 85.72% (C = 

35 mm), 80.33% (C = 40 mm), 63.14% (C = 50 mm) and 38.75% (C = 60 mm), for the same period of time. 

It is worth mentioning that the Eurocode EN 1990 [16] recommends a target reliability index of =1.5 (Pf
7%) for a reference period of 50 years in the service limit state (irreversible) and moderate reliability class; while 

the fib Model Code [17] recommends a minimum reliability index = 1.3 (Pf 10%) for depassivation triggered 

by chlorides from seawater or deicing salt (service limit state). One observes that the recommended values have 

not been obeyed in the simulations performed herein. Nevertheless, these codes do not provide clear information 
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about how service life have been accounted in the design, especially for chloride ingress case. A criticism of the 

fib model is that the calculated reliability has no meaning in relation to the corrosion distribution, requiring a 

review of the model [18]. According to Diamantidis & Holický [19], the reliability indexes recommended by EN 

1990 [16] do not have explicit link to the design working life. In addition, some studies suggest that depassivation 

does not fully fit the classic definition of service limit state, since loss of structural function does not occur with 

the depassivation of reinforcements. Thus, the comparison with values recommended by codes and design 

standards may not be adequate. Other limitations, associated with the mechanical model (such as rebar 

representation, constant diffusion coefficient and surface chloride concentration) or even the existence of 

insufficient statistical data, can contribute to epistemic uncertainties and incompatible results with the real world. 

6  Conclusions 

The Transient BEM approach demonstrated robustness and efficiency in the modelling of chloride diffusion into 

concrete pores. Besides, BEM enabled deterministic and probabilistic analyses, which lead to consistent responses. 

As expected, greater depths of concrete cover delayed the corrosion initiation. Nevertheless, the presence of cracks 

in the cover increased drastically the probability of depassivation for the analysis time. These results reinforce the 

importance of periodic prevention and maintenance measures for the durability of reinforced concrete structures. 
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