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Abstract. This work presents a geometrically nonlinear formulation for the analysis of buckling problems 
involving cement-based structures susceptible to thermoelastic effects and progressive material damage. 
Particularly, we are interested in simulating bifurcation and snap-through phenomena of columns and shallow 
arches under such conditions. The thermoelastic material implementation is based on a multiplicative 
decomposition of the deformation gradient, wherein the temperature field is assumed to be known (given). Damage 
effects, in turn, are taken into account based on a simple (yet representative) nonlocal continuum damage 
mechanics (CDM) mode ocality of which is ensured by means of a 
homogenization of the elastic equivalent deformation field. The formulation is implemented in an in-house finite 
element code developed by the authors including tools for solving two-dimensional plane strain problems. The 
model is solved within an iterative, fully consistent Newton-Raphson scheme. A numerical example is provided 
to validate our model and illustrate its capabilities against known results from the literature. 
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1  Introduction 

Slender structures are susceptible to instability problems (such as buckling) due to geometrical and/or 
material nonlinearities related to softening processes, which may be induced, e.g., by damage evolution in cement-
based concrete structures. Evaluation of damage in cement-based structures and its representation within numerical 
modelling is usually marked by some challenging implementational aspects. As the damage from stiffness 
degeneration induces a strain-softening behavior, it is common to face strain-localization issues, despite the 
simplicity that is offered by an isotropic local damage function approach. As commented by Belytschko et al. [1], 
finite element solutions based on such approach usually exhibit dependence on mesh element size, and increasing 
the level of mesh refinement does not help as problems in energy dissipation in such localization zones may occur, 
thereby affecting the solution´s convergence. Whithin the continuum damage mechanics (CDM) approach, in 
which the definition of a representative volume element (RVE) is critical to properly perform local 
homogenization, the consideration of a nonlocal damage model, as proposed by many authors (see Ba ant [2] and 
Pijaudier-Cabot [3], for example), is a valid approach to avoid such difficulties from material softening. 

This work presents a geometrically nonlinear formulation for the analysis of buckling problems involving 
cement-based structures susceptible to thermoelastic effects and progressive material damage. We follow the 
nonlocal approach. We are interested here in the analysis of plane strain slabs and columns subjected to thermal 
strains. The thermoelastic problem is based on a multiplicative decomposition of the deformation gradient, wherein 
the temperature field is assumed to be known. Damage effects, in turn, are taken into account based on a simple 
(yet representati
nonlocality of which is ensured by means of a homogenization of the elastic equivalent deformation field. The 
formulation is implemented in an in-house finite element code developed by the authors including tools for solving 
two-dimensional plane strain problems. The model is solved within an iterative Newton-Raphson. This work is a 
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continuation of a former work by some of the authors presented in [4]. The paper is organized as follows. In 
sections 2 to 4 we present our formulation (kinematics, damage, numerical problem and its corresponding solution 
scheme, respectively) and some implementation aspects. In section 5 we present a numerical application, including 
a brief discussion on the results and also the advantages and disadvantages regarding different solver methods. In 
section 6 we close the paper with our conclusions and final considerations. Throughout the text, plain italic letters 
( ) denote scalar quantities; boldface lowercase italic letters ( ) denote 
vectors; and boldface capital italic letters ( ) denote second-order tensors in a three-dimensional Euclidean 
space. The inner product of two vectors is denoted by , and the norm of a vector by . 

2  Formulation and numerical solution scheme 

Although cement-based materials damage analysis is usually associated to small strains, the formulation to 
be presented here includes geometrical nonlinear effects in order to adequately capture instability phenomena. We 
adopt a (damageable) hyperelastic material representation for the elastic part of the deformation. The formulation 
is introduced for two-dimensional plane strain problems from the outset. Both the constitutive representation and 
the nonlocal damage formulation are preceded by a Lagrangian kinematic description of an arbitrary thermoelastic 
transformation, in which large displacements and deformations are fully permitted. 

2.1 Kinematics and equilibrium 

Consider a two-dimensional representation of a body that occupies a region  and has a contour  in the 
Euclidean space (based in a global orthonormal reference base r ) 
is adopted to designate any parameter or body property in the reference configuration (related to a region  with 
mass density ), any point belonging to this body in this configuration can be described by its position vector  
, or else by  in the current configuration. The transformation generates a displacement field , as shown 
in Fig. 2. The total deformation gradient  and the displacement gradient  are given by 

(1) 

where  is the (standard) tensor product. We use here a reduced notation based on column-vectors  and , and 
note that the plane-strain particularization is already introduced since  and . Tensor  represents 
both the elastic-damage and the thermal transformations. The thermal-related deformation gradient  is taken 
here as linearly dependent of the temperature field  and is given through (see Lu and Pister [5]) 

 (2) 

where  is the thermal variation around a reference temperature  (intended to be the temperature 
field related to a stress-free initial state) and  is the material´s thermal expansion coefficient. As it can be seen, 
this volumetric transformation is assumed to be fully isotropic.  

 For arbitrarily large deformations, some strategy must be considered to split the total deformation gradient 
into its thermal and elastic counterparts in a consistent way. The multiplicative decomposition to be used here was 
proposed firstly by Micunovic [6] [7]). This 
approach allows the partition of the total deformation gradient as 

This approach is also used in finite-strain elastoplastic transformations (see, e.g., Campello [8], Campello et 
al. [9]). The multiplicative decomposition approach also demands the total transformation partition in an 
intermediate stage, characterized by stress-free thermal deformations without any strain restrictions. Figure 1(b) 
addresses this intermediate transformation and shows each configuration particularities. Considering that both 
damage evolution process and constitutive relation take place within the purely elastic part of the transformation, 
is important to obtain and evaluate the elastic deformation gradient in terms of total and thermal deformations. 
Due to the simplicity of  (as an invertible matrix), it is easy to express  and  as  

, with  . (3) 
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(with )  and (4) 

Figure 1. (a) Deformable solid under arbitrary (nonlinear) transformation. (b) Transformation based on 
multiplicative decomposition: fictitious configuration representation 

As seen in Figure 1(b), the purely elastic transformation  starts from an already deformed (though stress-
free) configuration , which has mass density  (due to expansion with mass conservation). For the 
static problem description in the reference configuration, the equilibrium and compatibility (related to boundary 
conditions) equations to be solved are 

(5) 

considering the mass forces  (per unit volume of the reference configuration) and the traction vector ( ) of a 
surface point (per unit area of the reference configuration), which is related to the 1st Piola-Kirchhoff (P-K) stress 
tensor and the normal vector  (in the reference configuration) in the point by . Equation (5) is the 
boundary value problem to be to be solved subsequently through the principle of virtual work (PVW). 

The proposed formulation must correctly represent the transformation regarding both thermoelastic and 
elastic-damage effects. Therefore, is important to observe it under the criterion of thermodynamic equilibrium 
(related to the dissipated internal energy equation). Considering a scalar isotropic damage parameter  and a 
damageable hyperelastic specific Helmholtz free energy function  (independent of temperature) 
and the Clausius-Planck inequality written in the reference configuration, the internal dissipation energy  is 
(see [10])  

which is related to reversible (if ) or irreversible processes. Note that this approach is dependent of the 
hypothesis that  is not affected by the heat flux if  (isothermal process), which can be valid for quasi-
static uncoupled problems, so . Furthermore, this formulation (with damage) proves to be 
appropriate for problems involving finite displacements but small deformations (as should be expected for cement-
based materials behavior). If the damage function is built from the relationship between intact and damaged areas, 
both Helmholtz free energy function  and the energy release rate by the growth of microcracks ( ) are 
given by 

(7) 

The Clausius-Duhem inequality condition for the second law of thermodynamics is verified if  and, 
as  must be positive, the scalar damage evolution must be crescent throughout the thermoelastic process. 
 

(6) 
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2.2 Constitutive relation 

The constitutive relation adopted here is based on the so-called Simo-Ciarlet hyperelastic material, which 
allows to represent a transformation for arbitrary finite displacements (requirement to properly capture the path in 
instability problems). The use of this relation has some advantages, as its simplicity (in consideration of the thermal 
parameters inclusion, also) provides a straightforward implementation. The correct derivation of the Simo-Ciarlet 
strain energy function  allows us to obtain both the 1st P-K stress tensor (described by its column-vectors 

) and the fourth-order tensor of elastic tangent moduli  (in which the second-order components  are used 
to form the fourth-order tensor ), to be used further below within the numerical schemes. Accordingly, the 
stresses  and tensors  are 

 and (8) 

, where (9) 

 and  (10) 

 
In the above expressions, one has . For a detailed description, see Curci et al. [4], Wriggers 
[11] and Gomes [12]. This constitutive formulation allows us to solve the geometrically nonlinear problem with a 
fully quadratic convergence rate for purely elastic transformations. For the material nonlinearities induced by the 
nonlocal damage process, the stiffness matrix  is no longer tangent is no longer tangent, and the quadratic 
convergence is lost at some conditions (i.e., damage growth). The criteria for damage modelling are presented in 
the next section. 

3  Damage modeling and nonlocal approach 

The material softening behavior adopted here is the classical damage model [13]. This model is well-
known and usually applied for cement-based materials, due to its simplicity (as an isotropic and scalar model) and 
the capacity to represent the concrete brittle and quasi-brittle behavior with a function that evaluates the damage 
evolution through a combined failure mode I (tensile) and II (shear). From the consideration of the Helmholtz free 
energy  state potential and the thermodynamics background, damage model evaluates the growth of 
microcracks into concrete matrix starting from a yield surface function  (to be dependent of nonlocal 
equivalent strain, ). This function is presented as  

(11) 

in which  is a strain threshold for damage non-growth, classified as the maximum equivalent strain achieved in 
that point (and limited by a material-dependent initial threshold ). For the sake of brevity, eq.(11) above is 
already presented with the yield surface as a function of this nonlocal equivalent strain,  which depends on the 
spatial average of local equivalent strain  around the region to be analyzed. The main advantage of using a 
nonlocal approach to represent damage growth is to avoid problems with strain localization due to the softening 
process (see [14]). In addition, a nonlocal approach to deformations better represents mesoscale homogenization, 
considering a continuum damage on the representative volume element (RVE). The local equivalent strain  can 
be evaluated for a generic point as , with  as a vector originated by the positive part of the 
eigenvalues  from the symmetric Green-Lagrange tensor , and = . The nonlocal equivalent 
strain  is then obtained through the following volume integration 

(12) 

which represents a weighted spatial average of  in the domain , with  as the weight function. This 
analysis is centered in the point with coordinates and must scan both weight functions and local equivalent 
strains from points with coordinates  around the target point. The function  to be used here (see Ba ant and 
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Pijaudier-Cabot [2]) is

(13) 

which is exponential and decays to insignificant values for distances greater than , i.e.,  must be evaluated 
only for . The parameter  is related to the RVE, on which the continuum media description 
is based. From this on, the damage is obtained through the ponderation of two exponential damage laws which 
comprises a tensile ( ) and a compressive ( ) part of the damage. These laws are functions of the curve fitting 
parameters ( , ,  and ), the nonlocal equivalent strain  and the initial strain threshold , as 

and (14.1) 

(14.2) 

The weighting of  and  is achieved through a composition dependent on scalar coefficients  and  
(respecting ), the latter defined by the stress-strain state of the analyzed point. That way, it gives  

. These coefficients are evaluated by calculating the positive and negative parts of strains 
related to the linearized stress partition (see Álvares [15]). 

4  Numerical discretization and solver schemes 

For the numerical solution, we resort to the standard Finite Element Method. The region  is discretized by 
quadratic, isoparametric, triangular elements (6 nodes) and the displacements field  is approximated by 
quadratic polynomial shape functions  (and their spatial derivatives  .). The nodal displacement vector  for 
each element is then used to evaluate the displacements at any point inside the element, and the displacement field 
vector  (related to the global d.o.f.s) is approximated by the union of those nodal displacements. Accordingly, 
applying the PVW on the boundary value problem of eq. (5), the objective is to solve, for a step , the nonlinear 
unbalanced forces relation  from 

   (15) 

in which  is the external forces control parameter for an incremental analysis. Considering the material 
nonlinearity induced by damage growth and softening, the standard Newton-Raphson method generally fails to 
encounter a solution after the problem reaches a limit point (related to the maximum external load or temperature 
that can be equilibrated by the elastic internal forces) due to the post-peak negative stiffness matrix. The numerical 
example to be explored here uses only the standard Newton-Raphson method, as the results with nonlocal approach 
presented good convergence for purely thermal loads. To consider only temperatures varying in the Newton-
Raphson procedure, the expression (15) must be rewritten to consider the inexistence of external loads. In such 
case, the temperature increments by  (temperature control parameter) affects the unbalanced forces only by its 
internal load vector, so the unbalanced forces relation becomes . Therefore, the equilibrium 
for each step is achieved when the thermal strains are internally balanced by the elastic strains for any element. 

5  Numerical application 

This presented formulation was implemented by the authors in an in-house FEM code and the following 
application allows to observe its capabilities. Figure 2 presents a two-dimensional representation of a slab 
subjected to variable thermal strains. This figure also shows the temperature field pattern for each step. This 
modelled slab is composed by plain concrete with its properties presented in Table 1. A slight fixed temperature 
gradient (from 0 ºC to 0.2 ºC) was applied along the slab height to induce the buckling within a stable path.  
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Figure 2. Plane-strain model of slab representation with temperature field and element discretization. 
 

The temperature rising induces an elastic buckling due to compressive stresses. The critical temperature 
variation  can be evaluated as the one which induces an axial compressive stress equivalent to the obtained by 
an axial compressive critical load  for plane strains problems. The vertical 
displacements must increase after this temperature is reached, as flexural stresses arise and positives equivalent 
strains above  starts to appear at the top of the slab from the symmetry side. Naturally, the additional temperature 
gradient slightly diverts the obtained result (as represented by the red dotted temperature-deflection path in Graph 
1) from the expected one to avoid the bifurcation point. Despite this, the observed result still shows the 
geometrically nonlinear nature of this transformation. 

Geometry Thermo-mechanical properties Nonlocal Damage Parameters 

Length L (m) 5.0 Young s Modulus E (MPa) 3.0E+04  0.9  3.0E-05 

Height h (m) 0.2 Poisson s ratio  0.2  1.0E+04 (cm) 2.0 

Thickness t (m) 1.0 Thermal expansion coeff.  (1/ºC) 1.0E-05  1.2   

Effective length  (m) 10.0  (N) 2.06E+06  (ºC) 22.0  1.5E+03   

Table 1. Model geometry, thermo-mechanical properties and damage parameters for numerical application.  

Graph 1 and Figure 3 present the main results. To avoid problems with unreal high strains in the fixed node, 
the region near this point was modelled to be insensitive to damage growth. The Graph 1 present the temperature-
deflection curves at point P (from Figure 2) for undamaged simulation and both nonlocal and local damage 
approaches. Figure 3 presents the scalar damage field and the deflections for the nonlocal model, considering 
points A, B and C from Graph 1. Such points represent, respectively, the last converged step before the material 
instability (which is also the last step converged for the local analysis before the solution diverges, see green path 
in Graph 1), the first converged step after the instability (B) and a step in an already advanced state of damage 
over the entire length of the slab (C). The results evidence the nonlinear behavior induced by the slab buckling for 
both undamaged and damaged paths, while the physical nonlinearity induced by damage growth was better 
captured by the nonlocal damage. It should be observed a gap between consecutive steps A and B (gray dotted 
line) that must be related to an instable path rs between both solutions) that N-R procedure 
cannot capture (and an arc-length scheme may be demanded). 

Graph 1. Temperature-deflection curves at point P for undamaged, local and nonlocal damage tests. 
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 Figure 3. Scalar damage field and vertical slab deflection for temperature increase. 

6  Conclusion 

This work is a continuation from a former work by some of the authors presented in [4]. We found that the 
partial results presented here are promising in properly capturing the damage growth of the material, mainly when 
subjected to instabilities due to thermal strains. As a next step, we aim to incorporate a modified arc-length scheme 
within the solution method, with which we hope to be able to capture the unstable part of the load-deflection curve 
and also more complex behaviors regarding physical and geometric instabilities for different problems.  

Acknowledgements. Second author acknowledges support by CNPq (Conselho Nacional de Desenvolvimento 
Científico e Tecnológico), Brazil, under the grant 307368/2018-1. 

The authors hereby confirm that they are the sole liable persons responsible for the authorship of this work, and that all material 
that has been herein included as part of the present paper is either the property (and authorship) of the authors, or has the 
permission of the owners to be included here. 

References 

[1] T. Belytschko, Z. P. Ba ant, H. Yul-Woong, and C. Ta-Peng, Strain-softening materials and finite-element 
solutions,  Comput. Struct., vol. 23, no. 2, pp. 163 180, 1986. 

[2] Z. P. Ba ant and G. Pijaudier-Cabot, Nonlocal Continuum Damage, Localization Instability and Convergence,  J. 
Appl. Mech., vol. 55, no. 2, pp. 287 293, Jun. 1988. 

[3] G. Pijaudier-Cabot and L. Jason, Continuum Damage Modelling and Some Computational Issues,  Rev. Française 
Génie Civ., vol. 6, 2002. 

[4] H. C. F. Curci, E. M. B. Campello, H. C. Gomes, and F. L. Maranhão, Geometrically nonlinear limit point analysis 
of concrete structures with damage and temperature effects,  in Proceedings of the XL Ibero-Latin-American Congress 
on Computational Methods in Engineering - CILAMCE 2019, 2019. 

[5] S. C. H. Lu and K. S. Pister, Decomposition of deformation and representation of the free energy function for isotropic 
thermoelastic solids,  Int. J. Solids Struct., vol. 11, no. 7, pp. 927 934, 1975. 

[6] M. Micunovic, A geometrical treatment of thermoelasticity of simple inhomogeneous bodies. I: Geometrical and 
kinematical relations,  Bull. l Académie Pol. des Sci. Série des Sci. Tech., vol. 22, 1974. 

[7] L. Vujo evi  and V. A. Lubarda, Finite-strain thermoelasticity based on multiplicative decomposition of deformation 
gradient,  Theor. Appl. Mech., vol. 28, 2002. 

[8] E. M. B. Campello, Modelos não-lineares de casca em elasticidade e elastoplasticidade com grandes deformações: 
teoria e implementação em elementos finitos,  Escola Politéccnica da Universidade de São Paulo, 2005. 

[9] E. M. B. Campello, P. Pimenta, and P. Wriggers, A triangular finite shell element based on a fully nonlinear shell 
formulation,  Comput. Mech., vol. 31, pp. 505 518, 2003. 

[10] Eduardo W. V. Chaves, Notes on Continuum Mechanics. Springer, Dordrecht, 2013. 
[11] P. Wriggers, Nonlinear Finite Element Methods. Springer, Berlin, Heidelberg, 2008. 
[12] H. C. Gomes, Método dos Elementos Finitos com Fronteiras imenras aplicado a problemas de dinâmica dos Fluidos 

e Interação Fluido Estrutura,  Escola Politéccnica da Universidade de São Paulo, 2013. 
[13] J. Mazars, A description of micro- and macroscale damage of concrete structures,  Eng. Fract. Mech., vol. 25, no. 5, 

pp. 729 737, 1986. 
[14] G. Pijaudier-Cabot and Z. Bazant, Nonlocal Damage Theory,  J. Eng. Mech. - J ENG MECH-ASCE, vol. 113, 1987. 
[15] M. da Silva Alvares, Estudo de um modelo de dano para o concreto: Formulação, identificação paramétrica e 

aplicação com o emprego do método dos elementos finitos,  Escola de Engenharia de São Carlos, Universidade de 
São Paulo, 1993. 


