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Abstract. Prestressing concrete has been used as a good options to beams and plates mainly those structures
which has enough strength to support large loads and distance. Parameters like fields strain and tension must
be considered in the mathematical models to design structures and predicts its behavior. In this article the main
goal is to analyze the relationship between loads and displacement of prestressing concrete structures with bound.
The approach taking into account the methods of nonlinear finite elements to describe the equations of tensor
fields regarding the strain/tension tensor fields. In order to analysis physical nonlinearities constitutive models are
assumed. On the other hand the geometrical nonlinearities are analyzed by means of a beam supported in both
ends with rectangular transversal section. The strain of the beam is given by the Euler-Bernoulli theory. In addition
the prestressing tendon is modeled as truss element. With analytical techniques based on nodal equilibrium forces
are employed to predict its mechanical behavior. A huge amount of results coming from literature is performed
in order to get news insights regarding the displacements in cables. The equilibrium conditions are obtained by
means of the equations regarding the nodal displacements. Thus the tangent stiffness matrix is assembled. Finally
the article is closed by comparing the numerical with experimental results.
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1 Introduction

In structural elements subject to bending deformation, longitudinal reinforcement is considered in order to
mitigate the effects due to tensile. One of its main features is that they are requested from the moment of concrete
deformation. Thus from such deformation the steel tendons start to resist the tensile efforts. This kind of structures
is known as passive reinforcement, that is, they start work after concrete loose its strength.

The reinforcement structures embedding into concrete that start to work before it loose its strength is known
as prestressing structures. This happen because the prestressng steel, which is tensile stresses by means of appro-
priate device, grows the capacity of concrete to support large loads even before its deformation. For this reason
the steel designed in this way in the interior of concrete is called active reinforcement. Thus, according to ([4]),
one concluded that the main goal of the prestressing concrete is reduce the deflection and the tensile cracks at
concrete by introducing additional normal compressed tension to cancel ordinary loads in which that structures are
subjected. It is well known that in regions where the structure are subjected to tensile tension the strength contri-
bution of concrete is poor, 10 times less if compared to compressive strength. This shows that the contribution of
concrete regarding the safety performance of structure is small in such regions, [4]. On the other hand regarding
the types of prestressing it can be divided into bounds and execution. Regarding bound, it can be designed at
initial of process which consist of bound between steel and concrete before application of concrete and the other
option is to consider the prestressing of steel after hardened concrete. Generally the prestressing strength is transfer
due to the anchor process between the prestressing concrete and the equipment of prestressing. The prestressing
method without bound have been one of the mainly methodologies employed in civil engineering projects where
the use prestressing is necessary, for instance, building constructions, [9, 10], due to its good performance regard-
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ing execution process. However from numerical simulation point of view, the prestressing methodology without
bound introduce additional difficulty in order to get the equilibrium equations once there is no complete adherence
between the concrete and the prestressing tendon. Because of this, few numerical simulation have been employed
if compared to experiments which have been conducting in order to get a better knowledge about the mechanical
behavior of strucutes subject to prestressing forces, [1, 2, 5, 7, 11–14].

In order to get a better insight about the behavior of strucutes subject to prestressing forces, in the last years
many numerical models have been employed. In [6] the authors adopt numerical analysis based on incremental
deformation method to analyses the concrete behavior of both service and ultimate loads by using nonlinear models
to predict the deformation of concrete upon the prestressed steel.

In the last years, many issues regarding the stability of structures have been considered in literature, between
that we quoted a few examples: deformation analysis of prestressed concrete with tendon projected to outside
structure can be seen in [1, 3, 5–7, 9–15]; bending analysis of beam with high eccentricity can be founded in [2];
problems boundness prestressing can be founded in [3]; second order effects were studied in[6]; combined effects
due to axial and bending loads can be founded in [8].

2 Mathematical modeling

At present work the relationship between stress/strain tension to a prestressed concrete beam with bound are
analyzed. In order to get the equations the beam is modeled using the assumptions of Euler-Bernoulli theory. Next
the prestressing steel are molded as truss element the same being truth to reinforced steel. Using material models
well established in the literature we achieves the equilibrium equations of the structure. Next the nonlinear theory
of Galerkin method are employed to get the tangent stiffness matrix and using a numerical method proposed
in (zienkiewicz) the numerical solution is obtained. A typical structure element at present work is described in
Figure 1,below By assumptions the shear deformation are neglected and the transversal section remain plans after

Figure 1. Beam geometry

deformation. The element contains two nodes and six degree of freedom, each of them presents three displacement
being one axia, one transversal and other rotation.

The use of axial displacement is justified by the presence of axial forces due to the prestressed steel. Thus the
field displacement are given by

u = a0 + a1x, (1)

v = b0 + b1x+ b2x
2 + b3x

3, (2)

where u, v stands, respectively, the axial and vertical displacement of structure. The coefficients, ai, bj , i =
0, 1, j = 0, . . . , 3 are obtained using the boundary conditions, which means that them must satisfy the follow-
ing conditions

a0 + a1x
e
i = uei , (3)

a0 + a1x
e
j = uej , (4)

where in equations (3)-(4), uei represents the axial displacement of node i connected to element e. Solving the
system (3)-(4) we obtain the following formula to axial displacement of element e,

ue(x) = Ne
1 (x)dei +Ne

2 (x)dej . (5)

In (5), Leij stands the length of element e given from the nodes i and j, and the shape functions Ne
i , i = 1, 2 are

given by:

N1 = 1 − x

Lij
, N2 =

x

Lij
, (6)
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In order to calculate the vertical displacement it is necessary to consider the compatibility equations at nodes
i e j, in a similar way to axial displacement, we can find the coefficient bj , j = 0, . . . , 3. Thus the vertical
displacement can be expressed as below,

ve(x) =

4∑
k=1

Ne
ik(x)deik, (7)

where
dei =

[
vei θ

e
i v

e
j θ

e
j

]T
, (8)

and
Ne
i = [Ne

i1 N
e
i2 N

e
i3 N

e
i4] , (9)

whit

Ne
i1(x) =

1

(Leij)
3

(
2x3 − 3x2(Leij) + (Leij)

3
)
, (10)

Ne
i2(x) =

1

(Leij)
3

(
x3Leij − 2x2(Leij)

2 + xLeij
)
, (11)

Ne
i3(x) =

1

(Leij)
3

(
−2x3 + 3x2Leij

)
, (12)

Ne
i4(x) =

1

(Leij)
3

(
x3Leij − x2(Leij)

2
)
. (13)

The total displacement fields Ueij , taking into account the axial displacement (5), vertial and rotational (7),
can be write as

Uei =

6∑
k=1

Ne
ik(x)deik. (14)

For k = 1, 2, Ne
ik is given by (6) and for k = 3 . . . , 4, Ne

ik is given by (9).
By assuming the usual theory of deformation in beams, the relationship stress/strain is given by

εx(x, y) = y
du(x)

dx
, (15)

where u(·) represents the axial displacement of structure and y is distance of bottom to the neutral axis of structure.
From the beam deformed configuration is possible write its axial displacement fields,

u = y
dv(x)

dx
, (16)

where v(·) stands the vertical displacement of structure. Replacing (16) in (15) we have that the axial deformation
is write as a function of vertical displacement fields,

εx(x, y) = −y d
2v(x)

dx2
. (17)

As a way to grow the precision of the curve stress/displacement the following second order model is proposed
[19],

εx(x, y) =
du

dx
− y

2

(
dv

dx

)2

− y
d2v

dx2
. (18)

The equation given in (18) is the motivation to define generalized moment and shear as

m(x) =
EI

2

(
dv

dx

)2

+ EI
d2v

dx2
, (19)

V (x) = EI
dv

dx

d2v

dx2
+ EI

d3v

dx3
, (20)

while the axial force is given by

F (x) = AE
du

dx
. (21)
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2.1 Internal forces of concrete

This section concerns with the construction of tangent stiffness matrix regarding the nodal equilibrium of
forces. In order to do one use the expression (7) which is replaced in (19) and proceeding to derivation we obtain

δme(x, de) = EI

4∑
l=1

(
4∑

l1=1

Ne
l1,x(x)del1

)
Ne
l,x(x)δdel + EI

4∑
l=1

Ne
l,xx(x)δdel . (22)

In the same way the linearization of V (x) is calculated using the equation (7), and replacing it in (20) we
obtain

δV e(x, de) = EI

[
4∑
l=1

Ne
l,x(x)

(
4∑

l1=1

Ne
l1,xx(x)del1

)
+

4∑
l=1

Ne
l,xx(x)

(
4∑

l1=1

Ne
l1,x(x)del1

)]
δdel

+EI

4∑
l=1

Ne
l,xxx(x)δdel . (23)

Regarding the axial displacement the equation (5) are used to obtain the expression

F e(x) =
EA

Leij
(δuej − δuei ). (24)

In (24) uei stands the displacement of node i with respect the element e.
Using the equations (22), (23) and (24) the stiffness matrix of concrete Kc is assembled, which is given by

Ki
c(1, l) =

 −EA
Le

ij
, se l = 1

0, caso contrário,
; Kj

c (4, l) =


EA
Le

ij
, se l = 1

0, caso contrário.
(25)

The terms regarding the shear forces and moment we have

eKi
c(2, l) = EI

4∑
l1

Ne
l1,xx(xi)N

e
l,x(xi)d

e
l1 + EI

4∑
l1

Ne
l1,x(xi)dl1 , (26)

eKi
c(3, l) = EI

4∑
l1=1

Ne
l1,x(xi)N

e
l,x(xi)d

e
l1 + EI

4∑
l1=1

Ne
l,xx(xi), (27)

eKj
c (5, l) = EI

4∑
l1

Ne
l1,xx(xj)N

e
l,x(xj)d

e
l1 + EI

4∑
l1

Ne
l1,x(xj)dl1 , (28)

eKj
c (6, l) = EI

4∑
l1=1

Ne
l1,x(xj)N

e
l,x(xj)d

e
l1 + EI

4∑
l1=1

Ne
l,xx(xj), (29)

In equations (26)-(29), the indexes i, j stands the nodes associates to element e.

2.2 Prestressing tension

The modeling of prestressing forces acting in an arbitrary transversal section of structure will be done as a
truss element with two degree of freedom in both direction axial and perpendicular. In order to do that considers
the displacement fields and deformation similar to axial displacement. Thus strain due to prestressing forces is
defined as

εxp =
dûeij
dx

=
dej − dei
Leij

. (30)

and stresses at tendon is given by

T ep = AE

(
d̃ej − d̃ei
Leij

)
. (31)
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The nodal displacement (d̃ei , d̃
e
j) in the local coordinate system is given by

 dei

d̃ej

 =

 cosαij sinαij 0 0

0 0 cosαij sinαij



δuei

δvei

δuej

δvej

 (32)

Once that the displacements are obtained from equation 32 the nodal forces can be calculated due to pre-
stressed tendon,

F eip

V eip

0

F ejp

V ejp

0


:=

AeEp
Leij



cos(αij)
2 cos(αij) sin(αij) 0 − cos(αij)

2 − cos(αij) sin(αij) 0

cos(αij) sin(αij) sin(αij)
2 0 − cos(αij) sin(αij) − sin(αij)

2 0

0 0 0 0 0 0

cos(αij)
2 − cos(αij) sin(αij) 0 cos(αij)

2 cos(αij) sin(αij) 0

− cos(αij) sin(αij) − sin(αij)
2 0 cos(αij) sin(αij) sin(αij)

2 0

0 0 0 0 0 0





uei

vei

0

uej

vej

0


(33)

2.3 Analysis of Physical Nonlinearities

The nonlinear physics is analyzed by assuming the following assumptions: the transversal section remain
plane during the bending deformation; there is perfect coupling due to bound between both concrete, passive and
active reinforcement; the relationship stress/strain to concrete is given like [8], that is,

σconcretoc =


σ′c

[
2εc
ε0

−
(
εc
ε0

)2]
, se εc ≤ ε0

σ′c

[
1 − 0.15

(
εc−ε0
εu−ε0

)]
, se ε0 ≤ εc ≤ εu,

(34)

where σ′c strength tensile compression of concrete; ε0 is the strain associated with σ′c; εu is the ultimate tension of
concrete.

To active reinforcement, the model adopted in this work, to stress/strain is proposed in[16],

σp = Epεp

Q+
1 −Q(

1 +
(
εpEp

Kσpy

)R) 1
R

 . (35)

In equation (35), Ep is the modulus of elasticity of active reinforcement; σpy is the yield tension of the prestressing
steel; K, Q e R are parameters obtained empirically whose values are K = 1.0618, Q = 0.01174 e R = 7.344.

2.4 Solving the equilibrium equations

In order to get the solutions of equations the Newton-Raphson method will be employed. First, we note that
the second order effect will not be treated in the present work.

The equilibrium equations in each element is given by

F e = Keu+Ge, (36)

where the tangent stiffness matrix of element e, Ke is defined as a resultant of concrete, prestressing tendon and
reinforcement steel tangent stiffness matrix. The modulus of elasticity are calculated using the constitutive models
of materials showed in equations 34, 35.

After applied the boundary conditions the following system of equations are obtained

KLLuL +KLPuP = fL, (37)
KPLuL +KPPuP = fP . (38)
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In system equations (37)-(38), uL represents the degree of freedom without restrictions and up are the prescribed
nodes. Once that up and fL, are knowns variables, the system (37)-(38) is solved in the following way

uL = K−1LL(fL −KLPuP ), (39)
fP = KPLuL +KPPuP . (40)

As (37) is nonlinear, we can rewrite it in the form

Ψ(uL) = fL −KLL(uL)uL −KLP (uL)uP = 0, (41)

in such case u1L,n = un and the interactive process is defined as

duiL,n = KLL,T (uiL,n)−1(fL(µn)) −KLP (uiL,n)uP , (42)

∆uiL,n =

i∑
k=1

dukL,n, (43)

ui+1
n = uin + ∆uiL,n. (44)

3 Results

Using experimental results given in [17] the load/displacement curve given by the numerical model regarding
to central span of structure are validate by Figure 2. In this example was modeled a beam supported in its both
ends with rectangular section built with six elements, seven nodes and three degree of freedom in each node. The
prestressing steel has yield tension of fpyk = 1710Mpa and ultimate tension of fptk = 1900Mpa. The peak
tensile of concrete was estimated in ε0 = 22, 46% and the ultimate tensile εu = 31, 0%. For the concrete under
tensile, the values adopted are εcr = 1.0×10−5 and εtu = 4, 0×10−4. The Figure 2 shows the profile calculated by
the algorithm proposed in the present work which can see in equatios (42)-(44). According to (42) the equilibrium
equations are parametrized by external forces fL(µn) in which together with infinitesimal displacement duL,nk
set the parametric relationship which represents the second order effects.

Figure 2. Load-dispalcement curve

4 Conclusions

The methodology employed in the present work presents a good performance. The numerical results when
compared with the experimentals shows that the procedures adopted allows us to get a better understanding re-
garding how to built the tangent stiffness matrix of the structure. Taking into account the physical and material
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nonlinearities, due to the concrete and prestressing, the procedures adopted shows that the model has a good perfor-
mance. It’s worth mentioning that the methodology proposed in the present work to calculate the tangent stiffness
matrix is new and constitute the most difficult part of the work. For future works we intended to consider structures
like-frames which implies the second order increasing. To handle with this kind of problem the bifurcation theory
will be used. For being a consolidate theory expected that analysis can identify the critical loads in which the
structure goes from elastic to plastic regime. Finally, the authors pointed out the the numerical results obtained
in the present work are in agreement with experimental result which are presented in Figure 2 , which leads the
authors to conclude that the implementation of numerical models are correct.
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