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Abstract. This article proposes a solution, obtained by line adjustment, to the problem of bending of thin plates 

with small deflections. The aim of this solution is to make the programming and manual calculation of bending 

moments and deflections easier than classical method equations and calculation tables. The values to make the fit 

was obtained by programing the Levy’s classical method in MATLAB® and the results were close to the values 

given by Timoshenko e Goodier (1959). The line adjustment was made in MATLAB® and the shape function was 

a polynomial equation of third degree with four variables. Furthermore, the values obtained numerically was 

compared with the coefficients in Chust and Figueiredo’s (2014) calculations table. It was verified that the 

tabulated values were not the maximums because they were always obtained in the middle of the plate. Therefore, 

a new calculation table for each kind of plate with the maximum values is proposed along with closed form 

approximations. The analyses were carried out for rectangular plates with clamped or simply supported edges. 
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1  Introduction 

Thin plates are bidimensional structures with one of the dimensions, the thickness, significantly smaller than 

the two others. Usually, the ratio between the two smallest dimensions of a plate is no larger than 1/10. As such, 

bidimensional plate theories are sufficient to analyze small deflections caused by loading, as long as the deflections 

remain small. 

The classical methods were the first developed to analyze plate bending, especially with the advent of 

reinforced concrete slabs. They are based on algebra and differential calculus to describe the mechanics and 

provide satisfactory analytical solutions for most usual plate shapes and loadings. 

Nevertheless, those methods provide solutions in the form of trigonometrical series and, for that reason, both 

manual calculations and computer programming are not straightforward or easily accomplished. This resulted in 

many calculation tables being created to summarize the values obtained by these methods in order to simplify 

hand-made analysis. These calculation tables became the standard practice [1] for concrete slab design, at least 

before the dissemination of computer-based solutions such as matrix solution of grids or finite elements. 

Early efforts to make these calculations automatic would look towards an algorithm based on searching these 

tables. Besides being inefficient and unpractical, it would imply a rework since they already come from a 

simplification and numerical solution. 

In this context, there are presently two options for slab analysis: manual calculations with the help of tables, 

or numerical methods such as finite elements. Hence, this work proposes an intermediary solution based on 

classical methods that can be used on hand calculations and easily programmable. This way, this solution can be 

inserted in automated analysis routines of slabs with no need to resort to tables or numerical methods. 

In this work, italic letters (𝑎, 𝑏, 𝛼, 𝛽, … ) represent scalar. Especially, 𝑤 will always stand for plate deflection, 

𝐷 for plate stiffness in many forms, 𝑞 for the load, 𝜈 for Poisson’s ratio, 𝑎, 𝑏 for the plate larger dimensions, ℎ for 

thickness and 𝐸 for the Young modulus of concrete. A Cartesian reference system will be used with the plate’s 

midsurface in the 𝑥 × 𝑦 plane and thickness in the 𝑧 direction. 
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2  Classical solutions 

Efforts to mathematically model the behavior of plates remount to the works of Leonhard Euler (1707-1783), 

Jacques Bernoulli (1759-1789), Ernst Chladni (1756–1827), Sophie Germain (1776-1831), Joseph-Louis Lagrange 

(1736-1813), Siméon Poisson (1781-1840) and others [2, 3, 4]. 

The first complete model for plate bending can be attributed to Navier in 1820. This solution consisted of 

using a double Fourier trigonometric series to approximate the load imposed on the plate and consequently its 

transversal displacement. Latter, Maurice Levy (1839-1910) introduced as a solution a single trigonometric Fourier 

series for plates with two opposing sides simply supported and the remaining sides either free or also simply 

supported [2]. 

The nomenclature for the plates will follow Reddy [5] and is represented in Fig.1. Also, the 𝑥 axis will always 

be parallel to the smaller side, with dimension 𝑎, and the 𝑦 axis will be parallel to the larger dimension 𝑏. We 

emphasize that the ratio between the plate sizes will be represented by 𝜆 = 𝑏/𝑎 and that the plates will be analyzed 

under uniform distributed load 𝑞𝑜, the most common situation for the structural analysis of civil engineering 

structures. 

 

Figure 1. Plate nomenclature. 

2.1 Navier’s Method 

According to Timoshenko and Goodier [6], Navier, analyzing the plate equilibrium represented by the 

differential equation  

 𝐷 (
∂4𝑤

∂𝑥4 ∂
+ 2

∂4𝑤

∂𝑥2 ∂𝑦2 +
∂4𝑤

∂𝑦4 ) = 𝑞, (1) 

noticed that this equation admits a relatively trivial solution for trigonometric loads such as 

 𝑞𝑚𝑛 = 𝑎𝑚𝑛 𝑠𝑒𝑛
𝑚𝜋𝑥

𝑎
𝑠𝑒𝑛

𝑛𝜋𝑦

𝑏
→ 𝑤𝑚𝑛 = 𝑏𝑚𝑛𝑠𝑒𝑛

𝑚𝜋𝑥

𝑎
𝑠𝑒𝑛

𝑛𝜋𝑦

𝑏
. (2) 

Consequently, if a loading can be approximated by a series of 𝑞𝑚𝑛, the displacements would result in another 

series. 

 𝑞 = ∑ ∑ 𝑎𝑚𝑛 𝑠𝑒𝑛
𝑚𝜋𝑥

𝑎
𝑠𝑒𝑛

𝑛𝜋𝑦

𝑏
→

∞

𝑛=1

∞

𝑚=1

𝑤 = ∑ ∑ 𝑏𝑚𝑛𝑠𝑒𝑛
𝑚𝜋𝑥

𝑎
𝑠𝑒𝑛

𝑛𝜋𝑦

𝑏

∞

𝑛=1

∞

𝑚=1

 (3) 

In the case of SSSS plates such as depicted in Fig.2, the boundary conditions are 

𝑤 = 0 ;  
𝜕2𝑤

𝜕𝑥2 = 0, for 𝑥 = 0 and 𝑥 = 𝑎, 

(4) 

𝑤 = 0 ;  
𝜕2𝑤

𝜕𝑦2 = 0, for  𝑦 = 0 and 𝑦 = 𝑏. 
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Figure 2. Navier’s SSSS Plate. 

A uniform load 𝑞𝑜 can be approximated by 

 𝑞 = ∑ ∑
16𝑞𝑜

𝜋2𝑚𝑛
 𝑠𝑒𝑛

𝑚𝜋𝑥

𝑎
𝑠𝑒𝑛

𝑛𝜋𝑦

𝑏

∞

𝑛=1

∞

𝑚=1

, (5) 

so that the deflection is obtained as 

𝑤 =
16𝑞0

𝜋6𝐷
∑ ∑

𝑠𝑒𝑛
𝑚𝜋𝑥

𝑎
𝑠𝑒𝑛

𝑛𝜋𝑦

𝑏

𝑚𝑛 (
𝑚2

𝑎2 +
𝑛2

𝑏2)
2

∞

𝑛=1

∞

𝑚=1

. (6) 

Other quantities such as moments and shear stresses can be obtained from the deflection. 

2.2 Lévy’s Method 

According to Timoshenko and Goodier [6], Levy proposed a solution in the form of 

 𝑤 = 𝑤1(𝑥) + 𝑤2(𝑥, 𝑦). (7) 

The 𝑤1 part is inspired by the deflection of a beam in the 𝑥 direction in such a way as to comply with the 

boundary conditions on the larger sides 

 𝑤1 = 0 ;  
𝜕2𝑤1

𝜕𝑥2 = 0 for 𝑥 = 0 and 𝑥 = 𝑎 (8) 

and the non-homogeneous part of the equilibrium equation 

 
𝐷 (

∂4𝑤1

∂𝑥4 + 2
∂4𝑤1

∂𝑥2 ∂𝑦2 +
∂4𝑤1

∂𝑦4 ) = 𝑞. 
(9) 

Hence, for a uniform load 𝑞𝑜 and simply supported longer sides, 

 𝑤1 =
𝑞𝑜

24𝐷
(𝑥4 − 2𝑎𝑥3 + 𝑎3𝑥). (10) 

Function 𝑤2 must obey a homogeneous equilibrium eq. (13) and also the boundary conditions on the longer 

sides. Moreover, the sum (7) must obey all the boundary conditions 

 𝑤2 = 0 ;  
𝜕2𝑤2

𝜕𝑥2 = 0, for 𝑥 = 0 and 𝑥 = 𝑎 (11) 

 𝑤 = 𝑤1 + 𝑤2 = 0;  
𝜕2𝑤

𝜕𝑦2 =
𝜕2𝑤2

𝜕𝑦2 +
𝜕2𝑤1

𝜕𝑦2 = 0, for 𝑦 = 0 and 𝑦 = 𝑏 (12) 
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 𝐷 (
∂4𝑤2

∂𝑥4 + 2
∂4𝑤2

∂𝑥2 ∂𝑦2 +
∂4𝑤2

∂𝑦4 ) = 0 (13) 

In this manner, 𝑤2 is proposed as a series (14) where 𝑌𝑚 is only dependent on 𝑦 

 𝑤2 = ∑ 𝑌𝑚(𝑦)

∞

𝑚=1

𝑠𝑖𝑛
𝑚𝜋𝑥

𝑎
. (14) 

A. Nadai proposes the 𝑌𝑚 part of the solution as a hyperbolic trigonometric function 

 𝑌𝑚 =
𝑞𝑎4

𝐷
(𝐴𝑚𝑐𝑜𝑠ℎ

𝑚𝜋𝑦

𝑎
+ 𝐵𝑚

𝑚𝜋𝑦

𝑎
𝑠𝑖𝑛ℎ

𝑚𝜋𝑦

𝑎
+ 𝐶𝑚𝑠𝑖𝑛ℎ

𝑚𝜋𝑦

𝑎
+ 𝐷𝑚

𝑚𝜋𝑦

𝑎
𝑐𝑜𝑠ℎ

𝑚𝜋𝑦

𝑎
), (15) 

where the constants 𝐴𝑚 , 𝐵𝑚 , 𝐶𝑚 , 𝐷𝑚 are chosen as to obey the support conditions. For an SSSS plate 𝐶𝑚 , 𝐷𝑚 are 

zeroes as symmetry along the 𝑥 axis imposes that only even functions are kept. The imposition of the other 

boundary conditions yields 

 𝐴𝑚 =  −
2( 𝛼𝑚𝑡𝑎𝑛ℎ  𝛼𝑚 + 2)

𝜋5𝑚5𝑐𝑜𝑠ℎ 𝛼𝑚
  ;   𝐵𝑚 =

2

𝜋5𝑚5𝑐𝑜𝑠ℎ 𝛼𝑚
. (16) 

Lastly, we arrive at eq. (17), that represents the deflection of an SSSS plate with uniformly distributed load. 

 

𝑤 =
4𝑞𝑜𝑎4

𝜋5𝐷
∑

1

𝑚5 (1 −
( 𝛼𝑚𝑡𝑎𝑛ℎ  𝛼𝑚 + 2)

2 𝑐𝑜𝑠ℎ 𝛼𝑚
𝑐𝑜𝑠ℎ

2 𝛼𝑚𝑦

𝑏

∞

𝑚=1

+ 
 𝛼𝑚

2 𝑐𝑜𝑠ℎ 𝛼𝑚

2𝑦

𝑏
𝑠𝑒𝑛ℎ

2 𝛼𝑚𝑦

𝑏
)  𝑠𝑒𝑛

𝑚𝜋𝑥

𝑎
 

(17) 

2.3 Calculation Tables 

The main calculation tables used for the analysis of concrete slabs are those by Bares (1970) with several 

values for Poisson’s ratio; by Kalmanok (1961) with 𝜈 = 0; and, in Brazil, those by Chust e Figueiredo Filho 

(2014) with 𝜈 = 0,2 [7]. 

The tables present coefficients 𝛼,µ𝑥, µ𝑥
′ , µ𝑦 and µ𝑦

′  used to find the maximum bending moments and 

deflections through the expressions. The subscript 𝑥, 𝑦 indicates the direction of the fibers being stressed by the 

moment and 𝑀′ is the moment at a clamped boundary. 

   µ𝑥 or µ𝑥
′ =

100 𝑀𝑥

𝑞0𝑎2 , (18) 

   µ𝑦 or µ𝑦
′ =

100 𝑀𝑦

𝑞0𝑎2
, (19) 

 𝛼 =
100 𝑤𝐸ℎ3

𝑞0𝑎4 . (20) 

For an SSSS plate with uniform load, Lévy’s solution in eq. (17) renders a maximum transversal displacement 

of 

 𝑤 =
4𝑞𝑜𝑎4

𝜋5𝐷
∑

(−1)(𝑚−1) 2⁄

𝑚5 (1 −
( 𝛼𝑚𝑡𝑎𝑛ℎ  𝛼𝑚 + 2)

2 𝑐𝑜𝑠ℎ 𝛼𝑚
)

∞

𝑚=1

.  (21) 

Using the definition Eq.(20) of 𝛼, 𝜆 = 𝑏 𝑎⁄  and 𝛼𝑚 = 𝑚𝜋𝜆 2⁄ , we arrive at 

 𝛼(𝜆) =
48(1 − 𝜈2)

𝜋5 ∑
(−1)(𝑚−1) 2⁄

𝑚5 (1 −
( 𝛼𝑚𝑡𝑎𝑛ℎ  𝛼𝑚 + 2)

2 𝑐𝑜𝑠ℎ 𝛼𝑚
) .

∞

𝑚=1

 (22) 
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3  Comparison of the Methods 

One approach to comparing the presented methods is through a convergence analysis. Fig.4 depicts the error 

in displacement for both Navier and Lévy solutions with 1, 2 or 3 terms in the series in respect to the exact 

(converged) solution for an SSSS plate. 

It can be seem that Lévy’s solution converge faster than Navier’s, as results with 3 terms are already 

indistinguishable from the reference solution for all the 𝜆 analyzed. 

 

Figure 3. Displacement error for Lévy’s and Navier’s approximation with 1, 2 and 3 terms 

Fig.5 depicts the first term of the series used to approximate the uniform load. It can be noted that Lévy’s 

solution present an excellent approximation for the load even with only one term, whereas Navier’s solution do 

not approximate the load in a satisfactory manner. 

 

Figure 4. Load representation for the first term of Lévy’s and Navier’s solutions. 

As such, we can verify what is stated by Timoshenko e Goodier [6], that Levy’s method is more convenient for 

computer implementation. 

4  Curve Fitting 

The equations were approximated using the Curve Fitting Toolbox available in MATLAB®. The methods to 

evaluate the quality of a fitting are of two kinds. The first are the graphic methods as residue analysis that help on 

visual interpretation. The second are the numerical methods as quality statistic data and the confidence interval 

that provide numerical evidence to help the statistical reasoning. The referred toolbox [8] provide data such as the 

sum of squared errors (SSE), R-square, adjusted R-square and the root mean squared error as depicted in Fig.6. 
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Figure 5. Goodness-of-Fit Statistics 

5  Results and discussion 

5.1 Linear Fitting 

Linear fittings were developed as to serve as an alternative to the calculation tables and as to make easier the 

programming of the values. The objective is to provide a way to obtain the 𝛼 and 𝜇 parameters with no need to 

calculate Levy’s series or resort to calculation tables. The fittings were carried such as to achieve a good quality 

in the results with the least number of parameters. 

 μ = 𝑎𝜆3 + 𝑏𝜆2 + 𝑐𝜆 + 𝑑 (23) 

A visual inspection of the curves for coefficients α, µ𝑥, µ𝑥
′ , µ𝑦 and µ𝑦

′  motivated the use of 4-parameter 3rd -

degree polynomial function approximation as in Eq.(22). In this equation, 𝜇 stand for any of the desired parameters. 

Other approximating functions were considered, such as rational and trigonometrical approximations, 

nevertheless, the polynomial provided better results. The fitting was carried with 500 points for each parameter in 

the interval 1 < 𝜆 < 2 and a confidence interval of 95%. Poisson’s ratio was taken as 𝜈 = 0,2. 

As for the goodness of fit, the values of R-square and Adjusted R-square remain close or equal to 1, what 

points to a good fit. Moreover, the values of SSE and RMSE remain close to 0, also an indication of a good fit. 

The observed residues were also close to null, with a random distribution characteristic of a suitable approximation 

function. The resulting parameters for eq.(23) are reported in Tab.1. 

6  Conclusions 

It is remarked that the equations obtained through the fitting are a good alternative to calculate maximum 

deflections and bending moments on concrete slabs. These equations simplify the classical methods and make 

easier for both manual and automated calculations. Moreover, these equations are easier to be programmed than 

calculation tables and, for manual calculations, they preclude the use of interpolations and the large number of 

tables necessary to cover every kind of plate. 

This work can be further developed through comparative analyses with other numerical and algebraic 

methods available in the literature. It is also subject to a better analysis of the fitting procedures, through the use 

of other approximating functions or mathematical analysis of the series solution of the differential equation. 
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Table 1. Fitted coefficients 

Plate supports 

1 < 𝜆 < 2  

µ∗ = 𝑎𝜆3 + 𝑏𝜆2 + 𝑐𝜆 + 𝑑 ∞ 

a B c d 

SSSS 

α -0,3048 -1,513 13,66 -7,169 15,00 

µx -0,0236 -2,4 12,94 -6,1 12,50 

µy 1,968 -9,346 13,68 -1,872 3,83 

CCSS 

α -2,47 10,46 -6,574 0,7825 15,00 

µx -1,872 7,449 -2,946 -0,4958 12,50 

µy 1,217 -7,695 15,34 -5,704 3,35 

µy' -1,22 9,674 -25,41 9,986 -12,50 

SSCC 

α 0,7025 -4,127 8,263 -2,626 3,00 

µx 0,9655 -5,624 11,14 -3,306 4,18 

µx' -1,743 9,867 -18,84 3,719 -8,33 

µy -0,932 4,86 -8,459 6,672 1,75 

CSSS 

α -1,492 4,698 3,835 -3,759 15,00 

µx -0,9674 2,411 5,653 -3,927 12,50 

µy 1,873 -9,944 16,75 -4,777 3,64 

µy' -2,127 13,34 -28,91 9,306 -12,50 

SSSC 

α 0,8021 -5,609 13,75 -5,657 6,20 

µx 0,9215 -6,322 15,22 -5,926 7,06 

µx' -1,921 12,1 -26,59 8,02 -12,50 

µy 0,05056 0,6529 -3,038 5,536 1,41 

CCCC 

α 0,5094 -3,676 8,928 -4,311 3,00 

µx 0,8005 -5,537 12,98 -6,136 4,18 

µx' -1,779 11,44 -25,04 10,25 -8,33 

µy 1,423 -6,025 7,491 -0,7616 1,49 

µy' -1,759 9,006 -15,26 2,858 -5,70 

CSCS 

α 0,3966 -3,934 12,14 -6,041 6,20 

µx 0,5398 -4,792 13,94 -6,606 7,02 

µx' -1,405 10,46 -26,59 10,77 -12,50 

µy 1,117 -4,931 6,507 0,4269 2,55 

µy' -2,173 11,38 -19,79 3,793 -7,65 

*Where µ may be α, µx, µx', µy or µy' 
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