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Abstract. This work addresses stability and locking of three classes of hybrid methods for elliptic problems on
straight and curved meshes in 2d. We consider here modifications of the hybrid methods presented in [1] and [2],
and compare them with the hybrid high order method discussed in [3]. For straight meshes, the approximation
order for polynomial spaces over edges can either be equal or one order smaller than the approximation order for
polynomial spaces in the interior. However, having one order smaller for edges is actually mandatory for obtaining
locking-free estimates from our modification of the primal method introduced in [1] on straight meshes (except
for triangles, where the approximation spaces are divergence-free). The other two hybrid methods are locking-free
whenever they are stable. In the case of curved meshes, we verify that all three methods are unstable if one chooses
approximation orders for the edges one order smaller than the interior. However, we also verify numerically that
all three methods are locking-free in curved meshes if these polynomial orders are equal.
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1 Introduction

Many different finite element techniques have been applied to solve the linear elasticity problem in the past
decades [1, 4–8]. The classical approach is based on formulations that provide approximations to the displacement
field, being the stress field recovered through post-processing [9]. Such formulations have the disadvantage that
the stress is usually recovered with poor accuracy using standard post-processing techniques (direct derivation of
displacement). Since stress is usually the main variable of interest, mixed formulations have been developed to
provide guaranteed optimal rates of convergence for both the displacement and stress fields [8, 10–12]. The spaces
developed in [12] were showed to provide good results even in the nearly incompressible regime. Discontinuous
Galerkin methods have also been applied successfully to this class of problems [13–16], mostly due to their robust-
ness and flexibility for implementing h and p adaptivity techniques. Hybrid DG formulations keep these properties
adding to the list the advantage of less degrees of freedom for higher order spaces, since static condensation can
be naturally used to obtain a linear system with only Lagrange multiplier degrees of freedom, see [1].

Among the advantages of HDG over DG methods are the less complicated assembly, natural hp-adaptivity,
and reduction of degrees of freedom in the global linear system by static condensation. All of these benefits
are acquired mostly due to the presence of Lagrange multipliers, which in addition increase stability because
of the weak satisfaction of the jump conditions over element interfaces. The very own presence of Lagrange
multipliers can have undesired consequences, however. For instance, both DG and HDG methods can use physical-
frame polynomials rather than reference-frame ones, since no strong continuity of the basis functions over element
interfaces is required. However, on curved meshes, using reference-frame polynomials over interfaces seems a
natural choice. On the other hand, DG methods promptly apply to curved meshes, with the only difference to
straight meshes being that numerically calculating the integrals may require more integration points. Another
point in favor of DG methods for our model problem, specifically those presented in [15], is that their symmetric
version is locking-free without any need of projections in the boundary terms. We verify in this work that this
does not happen to their HDG counterparts: the projection operators are essential for a locking-free estimate of
the displacements. Although using these projections may require more computations for d = 3, doing so along
with static condensation also generates a smaller linear global system, which more than outperforms the extra
computation needed for boundary integrals, in general. In addition, using reduced integration on the boundary
terms has the same effect of using projection operators in d = 2, which makes using projections even less expensive
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than otherwise.
In the sections to come, we start by introducing notation and polynomials spaces used in the hybrid methods.

We proceed by a resumed presentation of modified formulations from [1] and [2], which differ from the original
works in the presence of projection operators in the boundary terms. In the section that follows, we briefly discuss
the impact of curved meshes on hybrid methods, emphasizing the a priori requirement on the polynomial order
of Lagrange multipliers in this case. Finally, we present numerical results that verify stability and locking-free
property of the hybrid methods discussed.

2 Preliminaries

Let Hm(Ω) denote the usual Sobolev space equipped with the norm ‖·‖m,Ω=‖·‖m and the associated semi-
norm | · |m,Ω=| · |m, with m ≥ 0. For m = 0, we set L2(Ω) = H0(Ω) as the space of square integrable
functions and H1

0 (Ω) the subspace of functions in H1(Ω) with zero trace on ∂Ω. In addition, we set L2
0(Ω) ={

q ∈ L2(Ω) :
∫

Ω
q dx = 0

}
to be the the space of square integrable functions that have zero average in Ω. For

vector-valued functions, we use bold symbols to refer to the corresponding vector spaces: Hm := [Hm]d, Hm
0 :=

[Hm
0 ]d, L2 := [L2]d and L2

0 := [L2
0]d.

We define {Th}h to be a family of meshes of Ω ⊂ Rd into disjoint open polytopal elements K, star-
shaped with respect to a ball of radius ρK . The union of the closures of the elements K ∈ Th forms a cover-
ing of the closure of Ω, i.e., Ω̄ = ∪K∈ThK̄. The interfaces of the computational mesh Th are united in Eh =
{e; e is a facet of K for all K ∈ Th}, the interior facets are contained in E0

h = {e; e ∈ Eh; e is the interior facet},
and the boundary ones belong to E∂h = {e; e ∈ Eh; e ⊂ ∂Ω}. We assume that the domain Ω is polytopal and Th
is a regular partition of Ω. Thus, there exists γe > 0 such that hK ≤ γehe, where he := diam(e) is the diameter
of the facet e ∈ ∂K. We also assume that the facets in Eh do not degenerate with refinement. For each element K
we associate a unit outward normal vector nK , and when there is not a chance for confusion, we write simply n.

We will use Vkh and Qlh to denote the broken finite dimensional spaces on the partition Th, defined as:

Vkh = {v ∈ L2(Ω); v|K ∈ [Pdk(K)]d, ∀K ∈ Th}; Qlh = {q ∈ L2(Ω); q|K ∈ Pdl (K), ∀K ∈ Th}, (1)

with Pdk(K) being the d-dimensional space of polynomial functions of degree at most k on K. The Lagrange
multiplier associated with the trace of the displacement field û = u|e on each facet e ∈ Eh is chosen to live at

Mm
h = {v̂h ∈ L2(Eh) : v̂h|e ∈ [Pd−1

m (σ) ◦Ψ−1
e ]d, e = Ψe(σ), ∀e ∈ E0

h; v̂h|e = ūh, ∀e ∈ E∂h}, (2)

M̄m
h = {v̂h ∈ L2(Eh) : v̂h|e ∈ [Pd−1

m (σ) ◦Ψ−1
e ]d, e = Ψe(σ), ∀e ∈ E0

h; v̂h|e = 0, ∀e ∈ E∂h}, (3)

with Pd−1
m (σ) denoting the (d−1)-dimensional space of polynomial functions of degree at mostm on the reference

facet σ, mapped to the physical facet e by the mapping Ψe. In the space Mm
h above, ūh is the local L2(e)

projection of the Dirichlet boundary condition function ū on each e ∈ E∂h in (2). These numerical spaces are all
defined using approximation spaces Pdk on general polytopes, although we use here only triangles, quadrilaterals
and randomly distorted 9-node quadrilaterals.

3 The Model Problem

As model problem we consider the linear and isotropic elasticity problem in its displacement formulation,
governed by the differential equation

− divσ = f , with σ(u) = Dε(u) = 2µε(u) + λ(trε(u))I, (4)

where D = 2µI+λI⊗I is the isotropic elasticity tensor, ε(u) = 1
2 (∇u+∇uT ) is the symmetric part of the gradient

of u (linear strain tensor), trε(u) = div u is the volumetric deformation, I is the fourth-order identity tensor on
symmetric second-order tensors, I is the second-order identity tensor and λ and µ are the Lammé coefficients. For
linear plane strain, the Lamé coefficients are given by λ = Eν/[(1 + ν)(1− 2ν)], and µ = E/[2(1 + ν)], where
E is the elasticity modulus and ν is the Poisson’s ratio. Equation (4) leads to a displacement-based problem as
follows: find the displacement field u : Ω→ R2 such that

−divDε(u) = f , in Ω, (5)

with u = 0, on ∂Ω. Existence and uniqueness of solution to the problem above is proved in the infinite dimensional
space V(Ω) = H1

0(Ω). The primal continuous Galerkin formulation for this problem has a numeric counterpart
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that suffers from poor accuracy in the nearly incompressible regime (ν → 1/2). A way to circumvent this issue
is by rewriting the equations in terms of the displacement field u and a hydrostatic pressure φ, in which we define
φ := −λ div u. This mixed version of the problem consists of seeking the solution to equations in (5) by solving
the equivalent problem: find the displacement field u : Ω→ R2 and the hydrostatic pressure φ : Ω→ R, such that −2µdiv ε(u) +∇φ = f in Ω,

− 1

λ
φ− div u = 0 in Ω,

(6)

with u = 0 on ∂Ω. Existence and uniqueness of solution to the problem above is proved in the infinite dimensional
space V(Ω)×Q(Ω) = H1

0(Ω)× L2
0(Ω) by applying Babuška’s Lemma [17], as shown in [2].

4 Finite Element Approximations

In this section we present the numerical methods discussed in the sections to come. We consider two stabilized
primal hybrid methods based on problem (5), and a stabilized mixed hybrid method we have designed for equations
in (6). The primal hybrid formulations were introduced in [1] and in [3], while the mixed hybrid formulation was
analyzed in [2].

Stabilized Primal Hybrid Method: a stabilized primal hybrid (SPH) method for the differential form (5)
of the linear elasticity problem was presented and analyzed in [1]. We propose here a slight variation of the
formulation discussed in the reference: for each K ∈ Th, find uh|K ∈ Vkh(K), and for each e ∈ E0

h, find
ûh|e ∈Mm

h , such that

aSPH([uh, ûh], [vh, v̂h]) = fSPH([vh, v̂h]), with (7)

aSPH([uh, ûh], [vh, v̂h]) := (Dε(uh), ε(vh))Th − 〈Dε(uh) nK , (vh − v̂h)〉∂Th
+ θ〈Dε(vh) nK , (uh − ûh)〉∂Th + sSPH([uh, ûh], [vh, v̂h]),

fSPH([vh, v̂h]) := (f ,vh)Th , (8)

for all vh ∈ Vkh(K) and for all v̂h ∈ M̄m
h , where the symmetrization parameter θ may assume values −1, 0 or 1.

The stabilization bilinear form sSPH(·, ·) is given by

sSPH([uh, ûh], [vh, v̂h]) = 2µ
β0

h
〈πm∂K(uh − ûh), πm∂K(vh − v̂h)〉∂Th

+ λ
β1

h
〈πm∂K(uh − ûh) · nK , πm∂K(vh − v̂h) · nK〉∂Th , (9)

where πm∂K |e = πmσ ◦Ψ−1
e is the |JΨe

|1/2-weighted L2 orthogonal projector to the space [Pd−1
m (σ) ◦Ψ−1

e ]d, for
JΨe

being the Jacobian of the mapping Ψe, and β0, β1 > 0 are stabilization parameters that must be chosen large
enough. This stabilization form differs from the original work [1] in the presence of the projection operator πm∂K .
This modification makes the formulation a locking-free method under some restrictions to m, which we discuss
latter on in this work.

Stabilized Mixed Hybrid Method: a stabilized mixed hybrid method for our model problem, based on the
Stokes-like formulation (6), has been proposed and analyzed in [2]. This method has been proven to be uniformly
stable, and therefore locking-free, in every stable combination of the polynomial degrees k, l and m. The method
can be written in the following form: for each K ∈ Th, find uh|K ∈ Vkh(K) and φh|K ∈ Qlh(K), and for each
e ∈ E0

h, find ûh ∈Mm
h such that

aESMH([uh, ûh], [vh, v̂h]) + bSMH(φh, [vh, v̂h]) = fSMH([vh, v̂h]), (10)

aSSMH(φh, ϕh) + bSMH(ϕh, [uh, ûh]) = 0, (11)

for all vh|K ∈ Vkh(K), ϕh|K ∈ Qlh(K), and v̂h ∈Mm
h , where the bilinear forms are given by

aESMH([uh, ûh], [vh, v̂h]) = 2µ(ε(uh) , ε(vh))Th − 2µ〈ε(uh) nK , (vh − v̂h)〉Eh
+2µθ〈ε(vh) nK , (uh − ûh)〉Eh + sSMH([uh, ûh], [vh, v̂h]), (12)

aSSMH(φh, ϕh) = − 1

λ
(φh , ϕh)Th , (13)

bSMH(φh, [vh, v̂h]) = −(φh , div vh)Th + 〈φh , πm∂K(vh − v̂h) · nK〉Eh , (14)
fSMH([vh, v̂h]) = (f , vh)Th . (15)
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The stabilization bilinear form sSMH([·, ·], [·, ·]) is very similar to that in the SPH formulation (9):

sSMH([uh, ûh], [vh, v̂h]) = 2µ
β3

h
〈πm∂K(uh − ûh), πm∂K(vh − v̂h)〉∂Th ,

where β3 > 0 is a positive stabilization parameter crucial for obtaining coercivity.

5 Curved Meshes and Locking

The influence of choosing reference-frame polynomials to approximate unknowns defined over interfaces is
that the polynomial order m for facets may have to increase as p, the effective mapping order1 increases. This
possible requirement is due to the fact that in all hybrid formulations presented before, one needs to compose
physical-frame polynomials vh|e ∈ [Pdk(e)]d for the interior with the mapping Ψe in order to integrate them over
the boundary. Take, for example, integrals necessary to compute the |JΨe

|1/2-weighted L2 orthogonal projector
πmσ of v ∈ Pdk(e), with JΨe being the Jacobian of the mapping Ψe:∫

σ

(v ◦Ψe − πmσ )(ξ)w(ξ) |JΨe
| dξ = 0, ∀w ∈ Pd−1

m (σ).

Notice that we have, in this case, the inclusion Pdk ◦Ψe ⊆ Pd−1
kp . As a result, in the view of the equation above,

the approximation properties of the projection operator πmσ are determined by the largest value of k that satisfies
Pdk ◦ Ψe ⊆ Pd−1

m . This discussion is presented in details in [18], in the context of HHO methods, where the
authors show that assuming reasonable interpolation properties of πmσ ◦ Ψe leads to the following requirements
to the polynomial order: m = k − 1 for p = 1, and m = kp for p > 1. However, the authors also verified
numerically that choosing m = k when p > 1 seems to be enough for having an approximation order of k + 1 for
the displacement in the interior. These results for HHO methods are all carried to the SPH and SMH formulations.
It also turns out that this choice for the polynomial order k leads to locking-free methods on curved meshes,
something that does not happen for the SPH formulation on straight meshes. These results are numerically verified
in the next section.

6 Numerical Results

In this section we investigate the locking-free properties of the hybrid methods presented before, as well as
their behavior in curved meshes. To effectively detect locking, we apply our formulation to solve a plane strain
problem with E = 1, in which the solution for the displacement field is given by u1 = 2ν sin(πx) cos(πy); u2 =
(ν − 1) cos(πx) sin(πy). Consequently, the solution to the hydrostatic pressure φ = −λ div u is given by φ =
2νπ cos(πx) cos(πy)/(1 + ν). Notice that even in the nearly incompressible limit ν → 1/2, the hydrostatic
pressure is nonzero despite the fact that div u → 0. The domain Ω in our tests is given by the unit square
[0, 1]× [0, 1], and the Poisson modulus was chosen varying according to each case test. In all the experiments we
use Dirichlet boundary conditions, given by the exact solution. For β0, β1 and β3, we used the values described in
[2]. We have only simulated symmetric formulations, which we obtain by choosing θ = −1.

Figure 1 shows a sequence of triangular, trapezoidal and curved meshes. The trapezoidal meshes are obtained
by distorting some nodes of a quadrangular mesh in the direction of the y-coordinate. The curved mesh is obtained
by randomly altering the coordinates of 9-node elements in a square mesh.

Locking on straight meshes: the SMH and HHO methods have been proved to be uniformly stable in straight
meshes (see [2] and [3]). However, the analysis for the SPH method has only been developed for the compressible
case, as in [1]). Although the authors have also presented numerical evidence that the SPH formulation is locking-
free when β1 = 0 in [19], their analysis also suggests that both β0 and β1 need to be positive in order to obtain
coercivity when θ 6= 1. These are the results for the SPH method so far, when no projection is made to the
boundary terms. We discuss now the influence of the projection operators on the locking-free property of the SPH
formulation when m = k − 1. Figure 2 shows some results of h-convergence tests in triangular and trapezoidal
meshes. We denote by [·]k,m the [·] method with P2

k(K), K ∈ Th, spaces in the interior and P1
m(e), e ∈ Eh, spaces

at the boundary. We see that the lowest order combinations SPH1,0, SMH1,0 and HHO1,0 are not stable in triangles,
in general, as pictured by Fig. 2-(a), which is in accordance with other results in the literature. In trapezoids,
however, the same combinations provide optimal L2 convergence orders even with ν = 0.49999999. On the other
hand, SPH1,1 optimally converges for triangles, while it does not have the same behavior for trapezoids, as pictured

1Effective mapping order is understood as the minimal polynomial order necessary for the mapping. For example, for a 6-node triangle in
3d, p = 1 or p = 2, while for a 9-node quadrilateral in 3d, p can range from 4 to 1. When the mapping is affine, we have p = 1.
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Figure 1. Meshes used in the simulations. Figure (a) shows a trianglular mesh, figures (b) shows trapezoidal mesh
and Figures (c) shows 9-node randomly distorted quadrilateral mesh with curved elements.

by Fig. 2-(a) and -(d). In general, the Fig. 2 suggests that all combinations [·]k,m are locking free on triangles,
for m = k and m = k − 1, except in the lowest order [·]1,0. These results are expected for triangles, since the
spaces P2

k(K), K ∈ Th are naturally divergence free (see BDM spaces in [20]). When K is a quadrilateral these
spaces do not have the same property, and the optimal estimates in the incompressible limit have to be achieved by
means of the formulation itself. This is the case of SMH and HHO methods, as shown in Fig. 2-(c), -(d) and -(e),
where optimal convergence rates are observed in every combination. The analogous happens to the SPH method
only if one chooses the combination SPHk,k−1, which suggests that the projection operator at the boundary terms is
essential for the optimal estimates. Among all these formulations, the SMH method is the most stable numerically:
notice that the SPH and HHO methods may suffer from numerical issues that can drop convergence orders in the
incompressible limit, as pictured in Fig. 2-(c). The SMH method also has the advantage of being less expensive
than the HHO in its local problems, solved through the static condensation technique, though its local problems
are slightly more expensive than those of the SPH method.

Locking on curved meshes: the convergence of the SPH, SMH and HHO methods on curved meshes has
not been investigated before. The authors in [18] have a good discussion on this matter for the Poisson problem,
however. Being a second order elliptic problem, we wondered whether their results would be valid also for the
linear elasticity problem in the incompressible limit. Figure 3 shows an h-convergence test of the SPH, SMH and
HHO methods on 9-node randomly distorted quadrilateral meshes. The first three figures, (a), (b) and (c) contain
the convergence tests for the compressible case (ν = 0.3), which allows us to identify when the method is unstable
or not optimally convergent because of the spaces or formulation, and not locking. We notice that the combinations
[·]k,k−1 are unstable on curved meshes, which agrees with the results of [18], since the effective mapping order is
p = 2, in this case. The same figures also show that the combinations [·]k,k are stable and optimally convergent,
despite the apparent requirement that one would need [·]k,pk in order to have such results. This is also in agreement
with the conclusions in [18]. The following three figures, (d), (e) and (f), show the convergence order of the
stable combinations in the near incompressible limit (ν = 0.49999999). We notice that the locking-free property
is maintained for the SMH and HHO methods. The combination SPHk,k also generates locking-free optimally
convergent estimates for incompressible materials on 9-node randomly distorted quadrilaterals, although the same
does not happen for 4-node trapezoids. The tests show that the convergence to the optimal order is slower, however,
as figure (e) evidences. In this case we obtained the following sequence of convergence rates: 2.3, 2.5 and 2.9.

7 Conclusions

We have discussed the influence of projection operators on the boundary terms of two hybrid formulations for
the linear elasticity problem, a primal and a mixed one, and the influence of these projections in the locking-free
property of these formulations. We have also compared these methods with a hybrid high order method for the
model problem. We have concluded that the cheapest method, the primal one, is uniformly stable in triangles,
although compressible materials may cause rounding errors that influence numerical estimates in h-convergence
tests. Similar behavior is encountered in the hybrid high order method, and the mixed hybrid method does not
suffer from this problem. For quadrilaterals, the primal method is only stable if one uses approximation spaces
one order smaller for the Lagrange multipliers, in comparison with the order of the displacement field. The other
methods are locking-free on quadrilaterals independent of this restriction. Finally, we observed that all methods
are unstable if one chooses smaller approximation spaces for Lagrange multipliers on a 9-node randomly distorted
quadrilateral mesh. It suffices to have same order approximation spaces for interior and boundary in this type of
mesh, for all methods, which are also locking-free in this scenario.

We are currently devising proofs for the results observed numerically, which will be presented in a future
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



Primal HDG Methods on Curved Meshes

0.8 1 1.2 1.4 1.6

− log(h)

-3

-2.5

-2

-1.5

-1

-0.5

lo
g
(||
u
−

u
h
|| 0

,h
)

SPH1,0

SPH1,1

SMH1,0

SMH1,1

HHO1,0

HHO1,1

1

2

(a)

0.8 1 1.2 1.4 1.6

− log(h)

-5

-4

-3

-2

-1

lo
g
(||
u
−

u
h
|| 0

,h
)

SPH2,1

SPH2,2

SMH2,1

SMH2,2

HHO2,1

HHO2,2

1

3

(b)

0.8 1 1.2 1.4 1.6

− log(h)

-6

-5

-4

-3

lo
g
(||
u
−

u
h
|| 0

,h
)

SPH3,2

SPH3,3

SMH3,2

SMH3,3

HHO3,2

HHO3,3

1

4

(c)

0.6 0.8 1 1.2 1.4

− log(h)

-2.5

-2

-1.5

-1

-0.5

0

0.5

lo
g
(||
u
−

u
h
|| 0

,h
)

SPH1,0

SPH1,1

SMH1,0

SMH1,1

HHO1,0

HHO1,1

1

2

(d)

0.6 0.8 1 1.2 1.4

− log(h)

-4

-3

-2

-1

0
lo
g
(||
u
−

u
h
|| 0

,h
)

SPH2,1

SPH2,2

SMH2,1

SMH2,2

HHO2,1

HHO2,2

1

3

1

2

(e)

0.6 0.8 1 1.2 1.4

− log(h)

-6

-5

-4

-3

-2

-1

0

lo
g
(||
u
−

u
h
|| 0

,h
)

SPH3,2

SPH3,3

SMH3,2

SMH3,3

HHO3,2

HHO3,3

1

4

1

3

(f)

Figure 2. h-convergence tests for triangular ((a), (b) and (c)) and trapezoidal ((d), (e) and (f)) meshes, as in Figure
1 (ν = 0.49999999).

work. The locking-free property for the primal hybrid formulation is built from the results in [21] and [15], but the
results for curved meshes remain without proofs in the literature.
The authors hereby confirm that they are the sole liable persons responsible for the authorship of this work, and
that all material that has been herein included as part of the present paper is either the property (and authorship) of
the authors, or has the permission of the owners to be included here.
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Figure 3. h-convergence tests for 9-node randomly distorted meshes, as in Figure 1. The compressible case is
considered in figures (a), (b) and (c) (ν = 0.3), while the incompressible case is considered in figures (d), (e) and
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