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Abstract. Classical Multiscale Finite Volume (MsFV) methods can produce highly oscillatory pressure solutions 

(i.e. non-monotonic) for high permeability contrasts. This can be a serious problem as it can produce spurious gas 

throughout the reservoir when the pressure erroneously falls below the bubble point pressure and it can 

substantially increase the computational cost to solve the problem due to the necessity of extensive use of iterative 

procedures in order to obtain a low-recirculation velocity field. In this paper, we propose an adaptive flow based 

agglomeration strategy for correcting the non-physical terms present in the coarse transmissibility matrix by means 

of a preprocessing local step. This is done by using a local recalculation of the basis functions in a patch defined 

by a judicious grouping of dual coarse volumes that eliminates the spurious oscillations. Classical multilevel and 

multiscale methods define a uniform level at each coarse control volume, i.e., the same mesh level is used at each 

coarse control volume. As a result, it generates, in multiphase transport problems, the necessity of the inclusion of 

volumes that do not contain the saturation front in the high-resolution level. In this context, we present a framework 

to deal with non-uniform levels at each coarse control volume, which allows the use of fine-scale control volumes 

only where it is strictly needed, in order to produce smaller coarse scale matrices than those from classical 

multilevel multiscale methods. 

Keywords: Adaptive Algebraic Dynamic Multilevel (A-ADM), Algebraic Multiscale Solver (AMS), Multiscale 

Finite Volume (MsFV), Basis function enrichment, Adaptive non-uniform multilevel resolutions. 

1  Introduction 

The numerical simulation of fluid flow in petroleum reservoirs represents an important tool to obtain 

information that allows optimal ultimate oil recovery. The current industry standard for geocelular (static models) 

size up to 109 blocks, whilst simulation ready models (dynamic grids) size only up to 107 blocks. Thus, the 

simulation of flow on high resolution meshes is only possible through distributed computing systems [1] [2]. In 

general, techniques of homogenization, such as Upscaling, are applied to obtain approximated solutions using 

lower resolution meshes which implies in original data and accuracy loss. More recently, Multiscale Finite Volume 

(MsFV) methods were developed, as they provide more accurate solutions than those provided by Upscaling 

techniques, by transferring information between the fine and coarse scales using data transfer operators (restriction 

and prolongation), with reduced CPU cost when compared to fine-scale simulations. The prolongation operator is 

obtained through local solutions of elliptic problems with Reduced Boundary Conditions (RBCs). It’s well known 

in literature that the RBCs, despite of allowing the fine-scale decoupling in local distributable problems, can lead 

to highly non-monotone pressure solutions, especially on highly heterogeneous reservoirs [3]. In this work we 

present the Adaptive Algebraic Multiscale Solver (A-AMS) which adapts the RBCs throughout agglomeration of 
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dual volumes in order to control the non-physical terms at the coarse-scale transmissibility matrix, by means of a 

preprocessing step. In addition, multilevel operators and level definition criteria are established and applied over 

a non-uniform mesh resolution. These criteria are based on the Adaptive Algebraic Multiscale Solver (A-AMS) 

prolongation operator and controls the non-physical terms at the Adaptive Algebraic Dynamic Multilevel (A-

ADM) transmissibility matrix. The proposed methodologies are applied for the simulation of two-phase flow in 

petroleum reservoirs with highly heterogeneous permeability fields. Some remarkable results, as the reduction of 

pressure error norm, the infinity norm in three orders of magnitude and the Euclidian norm by a factor of 85, in 

comparison with the traditional AMS [1], was observed. 

2  Mathematical model 

In this article, we assume immiscible, isothermal and incompressible flow of oil and water with neglecting 

capillarity, gravity and adsorption through a non-deformable porous media and employ an implicit pressure 

explicit saturation (IMPES) strategy to solve the flux and transport equations. In this formulation, the pressure and 

saturation equations are solved separately in two different steps, coupled through the velocity field [4].  

{
−𝛻 ⋅ (𝜆𝑡𝛻𝑝𝑡+𝛥𝑡) = 𝑞

𝜙
𝜕

𝜕𝑡
𝑆𝛼
𝑡+𝛥𝑡 = 𝑞𝛼 − 𝛻(𝜆𝛼

𝑡 𝛻𝑝𝑡+𝛥𝑡)
, (1) 

where 𝜙 is the porosity of the media, 𝑝 is the total pressure and 𝑆𝛼, �⃗�𝛼 and 𝑞𝛼 denotes, respectively, the 

saturation, velocity and source/sink terms of the phase  𝛼, with 𝛼 = 𝑜 for oil and 𝛼 = 𝑤 for water phase. 𝜆 = 𝜆𝑜 +
𝜆𝑤 is the total mobility, where 𝜆𝛼 is the mobility of the phase 𝛼. The problem described by the system of equations 

(1), requires an appropriate set of boundary conditions and initial conditions [4], which depends on the geological 

characteristics of the boundaries of the reservoir as well as the existence of injection and/or production wells. 

3  Numerical approximation 

Applying the finite volume method (FVM) in the fine-scale control volumes with fluxes calculated by the 

two-point flux approximation (TPFA) method [4], the flow problem of Eq. (1) can be written in matrix form as: 

𝜯𝒇𝑝𝑓 = 𝑞𝑓 , (2) 

where 𝐓𝑓 is the transmissibility matrix, 𝑝𝑓 is the unknown pressure and 𝑞𝑓 is a vector that represents 

boundary conditions and source/sink terms. The entries of 𝐓𝑓, 𝜏𝑖𝑗
𝑓

, are associated to each internal face 𝑖𝑗 adjacent 

to the volumes 𝑖 and 𝑗 of the mesh, expressed as, 𝜏𝑖𝑗,   𝑖≠𝑗 
𝑓

= (𝜆𝑖𝑗𝑘𝑖𝑗𝐴𝑖𝑗)/ℎ𝑖𝑗 , where, 𝜆𝑖𝑗 is the total mobility, ℎ𝑖𝑗 is 

the displacement vector that links the adjacent volume centroids, 𝐴𝑖𝑗 is the 𝑖𝑗’s area and 𝑘𝑖𝑗 is the harmonically 

averaged permeability on 𝑖𝑗. τ𝑖𝑗,   𝑖=𝑗 
𝑓

= −∑ τ𝑖𝑗,   𝑖≠𝑗 
𝑓𝑁𝑓

𝑗=1
 [2].  

Moreover, by applying the Euler forward discretization for temporal term and first order upwind method 

(FOUM) [3] for the flux term we explicitly solve the transport problem, for the phase w: 

𝑆𝑤
𝑡+𝛥𝑡 = 𝑆𝑤

𝑡 +
𝛥𝑡

𝜙
𝛻 ⋅ (

𝜆𝑤
𝑡

𝜆𝑡
𝑲𝛻𝑝𝑡+𝛥𝑡) (3) 

where, 𝐊 is the permeability tensor. To guarantee stability of the transient problem, we need to limit the time 

step by the Courrant-Friedrichs-Lewy (CFL) condition [6] which states that for linear stability, 𝐶𝐹𝐿 =

Δ𝑡(𝑣𝑖𝑗,𝑥/ℎ𝑖𝑗,𝑥 + 𝑣𝑖𝑗,𝑦/ℎ𝑖𝑗,𝑦) ≤ 1, so the time step is set as: Δ𝑡 = 𝐶𝐹𝐿(𝑣𝑖𝑗,𝑥/ℎ𝑖𝑗,𝑥 + 𝑣𝑖𝑗,𝑦/ℎ𝑖𝑗,𝑦)
−1
, 𝐶𝐹𝐿 ≤ 1. �⃗�𝑖𝑗 =

−𝜆𝑖𝑗𝐊∇𝑝 is the Darcian velocity vector. 

4  Adaptive Algebraic Dynamic Multilevel (A-ADM) 

4.1 The AMS multiscale method 

The AMS (Algebraic Multiscale Solver) [7] performs scale transfers throughout restriction and prolongation 

operators. Two auxiliary meshes are used to define these operators: the primal and the dual meshes. The fine-scale 

control volumes within the dual coarse scale mesh, in 2D, are subdivided in three volume classes: Faces, Edges 
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and Vertices. Fig. 1 illustrates these different volume classes and the auxiliary meshes constructed on a fine-scale 

2D mesh, Ω, and highlights a primal coarse volume, Ω𝐶 , and a dual coarse volume, Ω𝐷. 

 
Figure 1:  Illustration of AMS primal (bold lines) and dual coarse meshes superimposed to a 2D fine-scale mesh 

(tight gray lines), Ω. Ω𝐶  is a primal coarse control volume, and Ω𝐷 a dual coarse volume. 

The AMS approximates the fine-scale pressure solution, 𝑝𝑓 of Eq. (5), by the multi-scale pressure solution, 

𝑝𝑚𝑠, which in turn is obtained from a linear combination of the coarse scale pressure solution, 𝑝𝑐, 

𝑝𝑓 ≈ 𝑝𝑚𝑠 = ∑𝛷𝐾

𝑁𝑐

𝐾=1

𝑝𝐾
𝑐 = 𝑷𝑝𝑐 . (4) 

This combination is expressed by the prolongation operator 𝑷, a matrix with dimension 𝑛𝑓𝑥𝑛𝑐. We obtain 

ΦK, the basis function associated to the 𝐾𝑡ℎ primal coarse scale volume, by solving in each dual coarse volume 

the decoupled local elliptic problem [8], 

{

−𝛻 ⋅ (𝜆 ⋅ 𝑲𝛻𝛷𝐾) = 0         𝑜𝑛 𝛺𝐷

− 𝛻∥ ⋅ (𝜆 ⋅ 𝑲𝛻𝛷
𝐾)∥ = 0    𝑎𝑡 𝜕𝛺

𝐷

𝛷𝐾 = δ̅𝐾𝐿 ,                ∀ 𝐿 ∈ [1, 𝑁𝑐]

, (5) 

Here, in the dual volume, Ω𝐷, a local elliptic problem is solved, in the boundary of this dual volume, 𝜕Ω𝐷, 

(Edge volumes) we impose the tangential flow. In the Vertex volumes we impose the Dirichlet boundary conditions 

[8]. The parameter δ̅KL is the Kronecker delta, δ̅𝐾𝐿,𝐾=𝐿 = 1, δ̅𝐾𝐿,𝐾≠𝐿 = 0. It is worth to mention that the Dirichlet 

boundary conditions are applied over the Vertex volumes, 𝑉. 

We can write the prolongation operator, 𝑷, following the steps described by [7], as: 

𝑷 = 𝑮 [

𝜱𝐹𝑉
𝜱𝐸𝑉
𝜱𝑉𝑉

] = 𝑮 [

𝜯𝐹𝐹
−𝟏𝜯𝐹𝐸𝜯𝐸𝐸

′ −1
𝜯𝐸𝑉

−𝜯𝐸𝐸
′ −1

𝜯𝐸𝑉
𝑰𝑉𝑉

], (6) 

where: 𝑮 is the permutation matrix, responsible for the mapping of the Wirebasket ordering into the original 

volume ordering; 𝜱ΑV is the slice of the prolongation operator that linearly combines the Vertex pressures into the 

pressure on the volumes of the dual class Α; 𝜯𝛢𝛣 is the slice of the transmissibility matrix corresponding to the 

dual classes 𝛢 and 𝛣 respectively; 𝑰𝑉𝑉 is the identity matrix with order 𝑛𝑐𝑥𝑛𝑐 and , 𝛣 = Face (𝐹), Edge (𝐸), 
Vertex(𝑉). 

Substituting Eq. (6) on Eq. (4), and applying the restriction operator to both sides of the resulting equation, 

the coarse scale pressure problem can be written as: 

𝓡𝜯𝑷⏟  
𝜯𝒄

𝑝𝑐 = 𝓡𝑞𝑓⏟
𝑞𝑐

. 
(7) 

In Eq. (7), 𝓡 is the restriction operator that integrates/summates, for each primal coarse volume, the fluxes 

of the correspondent fine-scale volumes [9]. 

The application of the RBC for the calculation of the basis functions, despite allowing the decoupling of the 

flow problem, can lead to negative transmissibilities on the coarse scale system, Eq. (7). High values of these non-

physical terms make the AMS returns highly non-monotonic pressure solutions [1]. 

4.2 Dual volumes agglomeration, A-AMS 

To overcome the generation of non-physical terms at the coarse-scale transmissibility matrix we propose 

the Adaptive AMS (A-AMS). In this method, we recalculate the basis functions on agglomerated dual volumes 

avoiding the application of RBC which otherwise leads to big non-physical terms at the coarse-scale 

transmissibility matrix generated by the AMS. The identification of these agglomerated dual coarse volumes is 
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based on the non-dimensional parameter, 𝜂, defined by [3]. 𝜂𝐼𝐽
𝐼 = 𝜏𝐼𝐽

𝐶 /𝜏𝐼𝐼
𝐶 . Here, 𝜂𝐼𝐽

𝐼 , is associated to the adjacent 

primal coarse volumes 𝐼 and 𝐽 in relation to line 𝐼 and the unique, 𝜂 parameter is taken as, 𝜂𝐼𝐽 = max (𝜂𝐼𝐽
𝐼 , 𝜂𝐽𝐼

𝐽 ). A 

threshold value, 휀, is used to define the critical adjacencies, where  𝜂𝐼𝐽 > 휀. Once classified the critical adjacencies, 

we turn the crossing dual Edges into Faces through the agglomeration of dual volumes. Figure 2 shows the dual 

mesh from A-AMS superimposed to the permeability field for: 𝜖 = ∞ (coincids with AMS), (a); 𝜖 = 1, (d). The 

agglomeration parameter, (b), and the agglomeration sets corresponding to 𝜖 = 1, (e). Four different basis 

functions for the original AMS (A-AMS with 𝜖 = ∞), (c) and the same basis functions with 𝜖 = 1, (f).  

 

 

 
Figure 2: Illustration of the A-AMS dual adaptation: permeability field over the dual mesh (a) and (d); (b) 𝜂𝐼𝐽; 

four different basis functions for: (c) AMS (𝜖 = ∞); (f) A-AMS (𝜖 = 1) and (e) agglomeration sets. 

On the agglomerated dual volumes, even if we apply a TPFA scheme we have adjacencies between the Face 

and Vertex volumes so 𝑻𝐹𝑉 is non-null and the prolongation operator have the following expression: 

𝑷 = 𝑮[

𝜱𝑭𝑽
𝜱𝑬𝑽
𝜱𝑽𝑽

] = 𝑮 [
𝜯𝑭𝑭

−𝟏(𝜯𝑭𝑬𝜯𝑬𝑬
′ −𝟏

𝜯𝑬𝑽 − 𝜯𝑭𝑽)

−𝜯𝑬𝑬
′ −𝟏

𝜯𝑬𝑽
𝑰𝑽𝑽

]. (8) 

To increase computational efficiency, the basis functions are not updated during the transport problem 

solution. To maintain the accuracy along the simulation, we propose an Adaptive Algebraic Dynamic Multilevel 

(A-ADM) framework with a non-uniform adaptive mesh resolution.  

4.3 Dynamic adaptation of the non-uniform multilevel resolution 

In this work, we use the dynamic adaptation of the multilevel resolution to maintain the non-physical terms 

under control. We define a non-uniform multilevel resolution in order to reduce the non-physical terms at the 

coarse-scale transmissibility matrix, 𝑇𝐴−𝐴𝐷𝑀. The level to which the fine-scale volume belongs is defined by three 

level-definition criterions: 

The first compares the saturation variation between the adjacent volumes 𝑖 and 𝑗, 𝛿𝑖𝑗, with a user defined 

threshold value, 𝛿𝑙𝑖𝑚. If  𝛿𝑖𝑗 > 𝛿
𝑙𝑖𝑚, the volumes 𝑖 and 𝑗 are maintained on the fine-scale level. 𝛿𝑖𝑗 = 𝑎𝑏𝑠(𝑆𝑖 − 𝑆𝑗) 

The second criterion compares the maximum ratio between the non-physical contributions to the off-diagonal 

terms of the coarse scale transmissibility matrix and the corresponding diagonal term, 𝛼𝑖, with a user-defined 

threshold value, 𝛼𝑙𝑖𝑚. If 𝛼𝑖𝑗 > 𝛼
𝑙𝑖𝑚, the volume 𝑖 is maintained on the fine-scale level, 𝛼𝑖 = 𝑚á𝑥((𝑻

𝑓𝑷)𝑖,𝐾≠𝐼/𝑡𝐼𝐼
𝐶). 

Finally, the third criterion avoids that the level of discontinuity leads to big non-physical terms at the multi-

level transmissibility matrix. For fine-scale volumes 𝑖 with small values of corresponding basis function Φ𝐼(𝑖) with 

Φ𝐾[ ] 
1 

0.7 

0 

0.3 

    (a) 𝑲𝑥𝑥 over dual (𝜖 = ∞)      (b)  𝜂𝐼𝐽, in red if 𝜂𝐼𝐽 > 1         (c)  Four Φ𝐾for 𝜖 = ∞       

𝐾𝑥𝑥 = 1 

𝐾𝑥𝑥 = 10
−2 

𝐾𝑥𝑥 = 10
−4 

𝐾𝑥𝑥 = 10
−6 

Φ𝐾[ ] 
1 

0.7 

0 

0.3 

(d) 𝑲𝑥𝑥 over dual (𝜖 = 1)  (e) Agglomerated sets for 𝜖 = 1  (f)  Four Φ𝐾for 𝜖 = 1       

𝐾𝑥𝑥 = 1 

𝐾𝑥𝑥 = 10
−2 

𝐾𝑥𝑥 = 10
−4 

𝐾𝑥𝑥 = 10
−6 
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neighbors in the same condition, when some of them are kept on the fine-scale and the others are not, considerable 

non-physical terms may appear. Therefore, we group adjacent volumes for which  𝛽𝑖 > 𝛽
𝑙𝑖𝑚, when some volumes 

in a group remain on the fine-scale, the entire group does the same. 𝛽𝑖 = (𝟏 − Φ𝐼(𝑖))/Φ𝐼(𝑖) and 𝛽𝑙𝑖𝑚 is a user 

defined threshold.  

The multi-level resolution is used to solve implicitly the flow problem. The transport problem is solved 

explicitly on the fine-scale after an additional step for getting a conservative velocity field on the fine-scale, for 

further details about this step the reader is referred to [10]. 

5  Results 

In this section, we present the results, 𝑥𝐴−𝐴𝐷𝑀, obtained by applying the A-ADM framework to a set of 

test cases and compare to those obtained solution on the fine-scale mesh, 𝑥𝑓𝑠. The error norm is defined as,   

‖𝑒𝑥‖ = ‖𝑥
𝐴−𝐴𝐷𝑀 − 𝑥𝑓𝑠‖/‖𝑥𝑓𝑠‖. 

In the example we have used a fixed coarsening ratio 𝐶𝑅 = (5, 11) on the non-boundary coarse volumes. On 

the boundary coarse volumes the coarsening is adapted in order to create as uniform dual volumes as possible, in 

addition, we locate the dual vertex volumes on the external boundary of the domain similarly to [3] [10] [11]. 

To illustrate the influence of the previously defined dual agglomeration parameters and refinement criteria 

we have applied the A-ADM methodology to the CSP-SPE-10 (Comparative Solution Problem) [12] bottom layer, 

a reservoir with 60𝑥220 volumes and aspect ratio of 𝐴𝑟 = 2 (Δx = 2Δ𝑦), with two wells. These wells are an 

injector with prescribed flow (10𝑚3/𝑑) at the bottom left corner and a producer with prescribed pressure (𝑝 =
50𝑀𝑃𝑎) at the top right corner. The permeability field and the wells positions are shown in Fig. 3. As initial 

condition we set a constant water saturation of 𝑆𝑤 = 0.2 equal to the irreducible, the residual oil saturation was 

set as 0.2, was used the Brooks and Corey model for relative permeability calculation. The viscosity was adopted 

as 0.3 𝑐𝑃 for the water and 3𝑐𝑃 for the oil, in addition null flux was set in all external boundaries. 

 

Figure 3. Permeability field of the CSP-SPE-10 bottom layer and wells localization, an injector with prescribed 

flow at the bottom left corner, and a producer with prescribed pressure at the top right corner. 

Below, we present some observations made by observing the influence of the threshhold value, 𝜖, for A-

AMS on the accuracy of pressure solution and the amount of volumes in wich the basis functions are recalculated: 

- when 𝜖 = ∞ our method matchs with the AMS because none dual volume is agglomerated;  

- The Euclidian error norm of the pressure (‖𝑒𝑝‖2) reduces from 85% to: 1% when 𝜖 = 10 or 𝜖 = 1; 

- The maximum error norm for pressure (‖𝑒𝑝‖∞) reduces from 3000% when 𝜖 = ∞ to: 7% when 𝜖 = 10 

and 3% when 𝜖 = 1; 

- We recalculate 15% of the basis functions when 𝜖 = 10 and 27% when 𝜖 = 1. 

Qualitatively, the effect of the A-AMS can be observed for the pressure surface plots in Fig. 4. In this figure, 

we can observe the pressure spurious oscillations generated by the non-physical terms at the AMS (𝜖 = ∞) 

solution, these artificial oscillations are significantly reduced when we apply the A-AMS with 𝜖 = 10 and 

disappear when we use 𝜖 = 1. 

For two-phase transport solution we have applied the A-ADM with two sets of refinement parameters, the 

first one included the criterion that considers the saturation field, 𝛿𝑙𝑖𝑚 = 0.1, and the second one does not,      

𝛿𝑙𝑖𝑚 = ∞. Both cases used the A-AMS prolongation operator obtained with the agglomeration parameter 𝜖 = 1, 

𝐾𝑥𝑥[𝑚𝑑 ] 

2. 104 

8. 101 

2. 10−3 

4. 10−1 

𝑞 = 10𝑚3/𝑑 

𝑝 = 50𝑀𝑃𝑎 
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the maximum non-physical contribution to the coarse scale was limited by the threshold value 𝛼𝑙𝑖𝑚 = 1, and the 

level discontinuity is limited by 𝛽𝑙𝑖𝑚 = 3. Figure (5) shows the porous volume injected versus the Euclidean 

pressure error norm, (a); percentage of active volumes (b) and water/oil ratio. Figure (6) shows the saturation front 

at the time-step corresponding to 0,3  PVI (Porous Volume Injected) for different flow solutions: obtained directly 

at the fine-scale, (a); obtained with A-ADM superimposed to the corresponding resolution for 𝛿 = 0.1, (b); and 

for 𝛿 = ∞, (c). 

 

 
 

Figure 4. Pressure surface plots obtained with: the fine-scale over the permeability field, (a); the A-AMS over 

the dual mesh, for 𝜖 = ∞, (b); 𝜖 = 10,  (c); 𝜖 = 1, (d).   

Figure 5. Porous volume injected (PVI) versus: Euclidean error norm for pressure, (a); percentage of active 

volumes, (b); and water/oil ratio, (c). 

 
Figure 6. Saturation front at the time-step corresponding to 30% of porous volume injected for: a) solution at 

fine-scale, and A-ADM mesh, superimposed to corresponding saturation front for: b) A-ADM including 

saturation based parameter; c) A-ADM, without saturation based parameter. 
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6  Conclusions 

In this paper, we have proposed an Adaptive Algebraic Dynamic Multilevel (A-ADM) method. By means of 

new mesh level definition criteria, the method uses a non-uniform mesh resolution to control the non-physical 

terms that may induce non-monotone solutions at the A-ADM transmissibility matrix along the simulation. We 

also have proposed A-ADM operators that are constructed with the Adaptive Algebraic Multiscale Solver (A-

AMS) operators. The results obtained for single phase and two phase simulations shown that the A-ADM 

framework is capable of producing accurate results for a challenging problem (bottom layer of SPE-10) using only 

a fraction of the volumes of the original fine-scale problem. 
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