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Abstract. The use of very high-order schemes to solve the transport problem, together with multiscale methods
applied to multi-phase flows in petroleum reservoirs has not been explored in literature. In this work, the Multiscale
Control-Volume (MsCV) method is used to solve the elliptical pressure problem while the hyperbolic saturation
equation is solved using the high-resolution nodal Correction Procedure via Reconstruction (CPR) approach. In
order to properly couple the previous set of equations, we use the Implicit Pressure Explicit Saturation (IMPES)
strategy and a velocity reconstruction operator based on the lowest order Raviart–Thomas shape functions. In
addition, a hierarchical Multidimensional Limiting Process (MLP) is employed in the reconstruction stage of CPR
approach to suppress numerical oscillations. To properly couple the MsCV method with the CPR approach an
adequate velocity reconstruction throughout all control volumes (CVs) is necessary to assure the accuracy of the
high-order method. Thus, the velocity field must present a proper degree of accuracy that, in general, is not handed
by multi-scale methods. To deal with this issue and to remove the high-frequency components of the error, we
have studied several smoothers. Hence, the aim of this paper is to describe the coupling of the MsCV method
with CPR for the first time in literature and to analyze the behavior and efficiency of different smoothers applied
to the elliptical problem in order to produce accurate velocity field and so proper two-phase flow results. Finally,
through two representative problems, which were solved to evaluate the accuracy, efficiency, and shock-capturing
capabilities of our new numerical methodology, we concluded that, for the same level o accuracy, our high-order
proposed methodology reduces the computational effort.

Keywords: Oil–water displacements, Anisotropic and heterogeneous petroleum reservoirs, MsCV, CPR approach,
Smoothers.

1 Introduction

Over the past few years, some multiscale methods have been proposed in order to overcome some limitations
of upscaling methods. Some of these methods are Multiscale Finite Element Method [3], Multiscale Finite Vol-
ume Method [8], Multiscale Mimetic Methods [10], Mixed Multiscale Finite Volume [9], Multiscale Restriction-
Smoothed Basis (MsRSB) [13]. These methods introduce basis functions that are able to project the discrete
system of the fine-scale in the space of the coarse-scale, that system is solved and the multi-scale operator project
the solution back to the original scale of the problem. Thus, the number of degrees of freedom is reduced, as well
as the amount of information lost, when compared to the upscaling methods [5]. Souza [15] proposed a multiscale
method capable of delivering accurate solutions for unstructured meshes and highly anisotropic and heterogeneous
cases by coupling the MsRSB with a cell-center Multi-point Flux Approximation-Diamond type (MPFA-D) finite
volume method. To obtain an accurate solution to the transport problem, it is necessary to obtain a conservative
and precise velocity field, which is recovered from pressure distribution, especially when high-order methods are
used to solve the hyperbolic problem. However, the velocity field handed by most multi-scale methods does not
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have the required accuracy. In order to increase the precision of the velocity field, some smoothers were used in an
iterative fashion to ensure convergence to the fine-scale solution [2, 13]. On the other hand, to solve the Saturation
equation a CPR scheme is employed to obtain stable, high-order accurate numerical solutions, with lower compu-
tational cost. The high-order shape functions used by the CPR method for approximating numerical solutions are
usually chosen to be Lagrangian interpolants through Gauss-Lobatto-Legendre points [7]. Our goal in this work is
to demonstrate the effectiveness of the proposed methodology for the solution of the oil and water displacement
in 2-D petroleum reservoirs on unstructured grids via an appropriate combination of the MsCV scheme with a
smoother in an iterative fashion, and the high-order CPR method using a sequential approach.

This paper is organized as follows. In Section 2, we present the mathematical model, describing the in-
compressible two-phase flow of oil and water in petroleum reservoirs. In Section 3, we describe the numerical
formulation of the MPFA-D scheme, the reconstruction of the Darcy velocity inside of CVs, the CPR method,
the MsCV scheme and the smoother technique. In Section 4, we solve two 2-D problems in order to verify the
accuracy, efficiency and shock-capturing capability of the proposed methodology. Finally, we present conclusions
in Section 5.

2 Mathematical Model

In this section, we briefly present the equations and assumptions adopted to describe the two phase flow
(oil/water) in petroleum reservoir rocks. We assume that the fluid flow is isothermal and incompressible and, for
the sake of simplicity and without lost of generality, we neglect capillary and gravitational effects. In addition, we
use a segregated formulation in which the physical phenomena are governed by two PDEs, i.e., the pressure and
saturation equations, respectively. The elliptic pressure equation is expressed by

~∇ · ~v = Q, with, ~vi = −λiK~∇p where, i = w, o (1)

Here, the total fluid injection/production rate Q is denoted by Q = Qw + Qo, which is the sum of the
sink/source terms of each phase and ~v is the total fluid velocity ~v = ~vw + ~vo. With ~vi being the Darcy’s phase
velocity, where p stands for the pressure, K is the absolute rock permeability tensor, and the phase mobility is
λi = kri/µi, where the relative permeability of phase i, kri is given by the Brooks and Corey model [16], and µi
is the fluid viscosity.

The hyperbolic saturation equation can be written as [4, 16]

φ
∂Sw
∂t

= −~∇ · ~F (Sw) +Qw, with, ~F (Sw) = fw(Sw)~v (2)

where φ is the rock porosity, Sw the saturation of the water phase and ~F (Sw) is the flux function, with, fw =
λw/(λw + λo) being the fractional flux function, and considering the assumption that the media is fully saturated
So + Sw = 1.

2.1 Initial and Boundary Conditions

Typical initial and boundary conditions for the pressure, Eq. (1), and saturation, Eq. (2) , equations, respec-
tively are given by

p(~x, t) = gD on ∂ΩD × [0, t], ~v · ~n = gN on ∂ΩN × [0, t]

Sw(~x, t) = S̄I on ∂ΩI × [0, t], Sw(~x, 0) = S̄0
w on Ω× t0

(3)

where Ω denotes the physical domain, ∂ΩD and ∂ΩN represent, respectively, Dirichlet and Neumann boundaries,
∂ΩP and ∂ΩI production and injection wells, gD prescribed pressure, gN prescribed flux, S̄w is the prescribed
saturation in an injection well and S̄0

w is the initial saturation distribution at time t0.

3 Numerical Formulation

3.1 Implicit formulation for the pressure equation using the MPFA-D method

In order to solve the pressure equation for unstructured grids with anisotropic and heterogeneous permeabil-
ity, a MPFA-D method is adopted [4]. The MPFA-D scheme, uses multiple points to approximate the flux at the
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interface between neighboring cells. The MPFA-D is a completely cell-center formulation, which requires the val-
ues of pressure for each vertex, at the two edge’s endpoints, that are obtained using a linear weighted combination
of the pressure values in the center of the surrounding cells. By using the MPFA-D scheme, we can write the
Eq. (1) in its discrete form, as ∑

IJ∈∂Ωk

~vIJ · ~NIJ = Q̄kVk (4)

where the continuous flux on the edge IJ [4] is given by

~vIJ · ~NIJ ' τIJ [pR̂ − pL̂ − υIJ(pJ − pI)] (5)

In the previous equation pI , and pJ are the pressures at the end points (in 2D) on the edge IJ , pR̂, and pL̂ are
the CV pressures at the collocation points, to the left and to the right sides of the edge IJ , and with, τIJ and, υIJ
being the scalar transmissibility and the non-dimensional tangential parameter, respectively.

3.2 Reconstruction of Darcy’s velocities inside the CV of a quadrilateral mesh

By considering the Eq. (5) computed using the MPFA-D method, we can recover a full velocity field within
the reference quadrilateral domain, via the lowest-order Raviart-Thomas, H-Div space RT0 [7], in the following
form

~vR(~ξ) =

4∑
IJ=1

FIJϕIJ (6)

where FIJ = ~vIJ · ~NIJ is the flow rate through a Control Surface (CS)
−→
IJ , and ϕIJ are the RT0 shape functions,

on standard bi-linear quadrilateral {~ξ = (ξ, η)| − 1 ≤ (ξ, η) ≤ 1}. The velocity field from the reference to the
physical domain is mapped back via the Piola transformation, ~vP(~r) = P(~ξ)~vR(~ξ), in such a way that the flow rate
is preserved.

3.3 The explicit saturation equation

In [18], the author introduces a new differential formulation to deal with hyperbolic equations in nodal dif-
ferential form, the scheme is called CPR approach. This method is shown to be very simple and efficient, and,
from a practical viewpoint, its implementation is relatively easy and of low computational cost. Equation (2) in the
absence of source terms, and setting φ = 1, without loss of generality can be written via the CPR approach in its
semi-discrete form, as

∂SPn

w(i;j,k)

∂t
= −

(
Πj,k

[
~∇ · ~Fw(SPn

i )
]

+

2

|J |i;j,k

[Fξ(−1, ηk)− F ξw(i)(−1, ηk)]g′L(ξj) + [Fξ(1, ηk)− F ξw(i)(1, ηk)]g′R(ξj)+

[Fη(ξj ,−1)− F ηw(i)(ξj ,−1)]g′L(ηk) + [Fη(ξj , 1)− F ηw(i)(ξj , 1)]g′R(ηk)


) (7)

where, J is the Jacobian matrix of the transformation, F is a Roe approximate Riemann solver with entropy fix,
Π is a projection operator, and g′ is the derivative of the Nodal Discontinuous Galerkin (DG) correction function g
[6]. The integration in time is carried out using a third-order Runge-Kutta method and a hierarchical MLP is used
in the reconstruction stage to prevent non physical oscillations [7].

3.4 Multiscale Control-Volume Method - MsCV

The MsCV scheme presented here can be seen as an extension of the classical MsRSB. The major advantage
of the MsRSB over multiscale methods in the MsFV family is the possibility to work with both coarse and fine
scale unstructured meshes. The MsCV extends the MsRSB, by replacing the linear TPFA, which is only consistent
on k-orthogonal fine-scale grids, by the MPFA-D method, then, we devise a framework that correctly computes
the prolongation operator on general grids, therefore allowing the simulation on unstructured grids on all scales.
On the other hand, to mitigate spurious oscillations on the pressure field that can also impact the velocity field, we
use a smoother in an iterative fashion in order to ensure convergence to the fine scale solution [1, 13, 17]. After
properly calculating the prolongation (Pop) and restriction (Rop) operators, we can write the multiscale method as
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Pms = P opPc = P opT
−1
c Q

c
≡ P op

(
RopT fP op

)−1
RopQf (8)

where Pms and Pc are the multiscale solution on the fine-scale and coarse scale, respectively, T the transmissibility
and Q the source/skin term, here the subscript f and c indicate the values on the fine-scale and coarse-scale,
respectively. For further details see [15].

3.5 Smoothers

Smoothers have the ability to remove high frequency components of the error, while maintaining low fre-
quency components. To mitigate spurious oscillations on the pressure field that can also impact the velocity field,
we use a smoother in an iterative fashion that allows convergence to the fine scale solution. In this work, the
performance of four iterative solvers was analyzed [14]

1. Multiscale solver [2]
pk+1
f = pkf + PopT

−1
c

(
Ropr

k
f

)
+M−1rkmf (9)

2. Modified Multiscale solver [12]

pk+1
f = pkf + Pop

(
T−1
c Rop

(
rkf − Tf

(
M−1rk

)))
+M−1rk (10)

3. Multilevel solver [11]

pn1
f = pkf +M−1

f rkf , pn2
f = pn1

f + PopM
−1
c Ropr

n1
f , pk+1

f = pn2
f +M−1

f rn2
f (11)

4. Richardson solver [11]
pk+1
f = pkf +M−1

f

(
Qf − Tfpkf

)
(12)

where pf e pc are the pressure in the fine scale and coarse scale, respectively, T is the transmissiblity matrix and
M−1 is the smoother, and rk referes to the residual.

The proposed smoother technique was implemented by using different testing methods [14]: Forward Gauss-
Seidel (FGS), Backward Gauss-Seidel (BGS), Forward Successive Over Relaxation (FSOR), Backward Successive
Over Relaxation (BSOR) and Incomplete LU Factorization, as will be discussed in section 4.

4 Numerical results

4.1 One-phase flow on the SPE 10 Data Set

This test case was adapted from [15]. The aim of this study is to compare the reliability and accuracy of
the smoother strategy on each of the 85 layers of the tenth SPE Comparative Solution Project (SPE10) using the
corresponding permeability field. The SPE10 model describes a 1,200 x 2,200 x 170 (ft) field using a 60 x 220 x
85 quadrilateral structured grid [15]. However, we used a regular, and unstructured quadrilateral mesh on the fine
scale, and a honey-comb coarse grid with 64 coarse cells. Then, each problem is solved using null flux conditions
on the boundaries, pressure (pprod = 0), and flux (qinj = 1) are prescribed on the top-right corner and on the
bottom-left corner of the domain, respectively. The Euclidean norm of the error for each SPE layer is shown in
Fig.1, where the benefits of the previously mentioned iterative solvers are highlighted, using 15 iterations. Except
for the Richardson solver, see Fig.1 (d), we can see that the methods provide a reasonably accurate solution, but
the layers 46, 63 and 65 of the SPE10 model presented great discrepancies, where the errors stand up, see Fig.1 (a,
b and c). The smoother obtained via the incomplete LU factorization managed to reduce errors even in the most
problematic layers of the SPE10 model (Upper Ness formation), however, it can result in a significant increase in
computational cost. In this work, we have adopted the BSOR method, due to its potential of delivering the same
accuracy as the LU method, at a lower computational resource usage.

4.2 Water-oil flow on a highly heterogeneous and isotropic reservoir

This test case was adapted from [15]. In this example, we solve an interesting test case that deals with the
incompressible two-phase flow of oil and water in a reservoir medium considering a highly heterogeneous and

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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(b) Modified multiscale solver.
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(c) Multilevel solver.
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(d) Richardson solver.

i-MsCV (BSOR) i-MsCV (FSOR) i-MsCV (ILU) i-MsCV (BGS) i-MsCV (FGS)

Figure 1. One-phase flow on the SPE 10 Data Set: Impact of the smoother strategy on the velocity field: Euclidean
norm of the error for each SPE layer (15 iterations).

(a) Permeability field. (b) MsCV-FOU-P0 (c) i-MsCV(BSOR)-FOU-P0

(d) Reference, 11,180 CVs (e) MsCV-CPR-P1 (f) i-MsCV(BSOR)-CPR-P1

Figure 2. Saturation profiles at PVI = 0.4 on a quarter five-spot problem computed on highly heterogeneous
and isotropic reservoir, with CFL = 0.45: Saturation profiles without smoother strategy (Middle), and Saturation
profiles using the BSOR smoother strategy (Right).
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Table 1. Average CPU-times for different grid
sizes and polynomial approximation.

Method Fine-scale Coarse-scale CPU-time(min)

i-MsCV-FOU-P0 5,380 CVs 35 Cells 679.6

i-MsCV-CPR-P1 2,795 CVs 18 Cells 461.0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

PVI

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Water Cut

Reference Solution i-MsCV-FOU-P0 i-MsCV-CPR-P1

Figure 3. Water cut curves on highly heterogeneous and
isotropic reservoir.

isotropic permeability field, which is given by the following expression

K(x, y) = ε2 cos (6πx) cos (6πy)I (13)

with I being the identity matrix, and ε = 5× 10−2, as illustrated in Fig. 2 (a). The computational domain consists
in an unitary square Ω = [0 1] × [0 1] in a 1/4 five spot configuration in which flux is prescribed (Qinj = 1) at
the injector well and pressure is prescribed (pprod = 0) at the producer well. Water saturation in the injection well
is set to Sw = 1, in a reservoir initially saturated by oil (S̄0

w = 0). We use this test case to assess the quality of the
water saturation solution after an iterative multiscale smoother technique. As mentioned previously, the i-MsCV
smoother technique drastically improves the total velocity field, which is recovered from pressure distribution, in
order to compute a correct saturation solution, as presented in Figs. 2 (c and f). In the case of an MsCV computation
without a smoother strategy, we can see anomalous behavior caused by an inaccurate evaluation of the velocity field
required, for both low, and high order discretizations, as depicted in Figs. 2 (b), and (e), respectively. Comparing
the FOU and the CPR methods in terms of resolution of the saturation front and computational efficiency for the
similar level of accuracy, we observe that the CPR scheme has significant computational advantages over the FOU
method, i.e., the CPR method shows an excellent improvement in resolution and reductions by around to 30% in
computational effort, when compared to the FOU scheme, see Figs. 2 (c and f), and Tab. 1. On the other hand,
as depicted in the inner region of the red rectangle, in Fig. 3, the solution obtained with the CPR method predicts
the water breakthrough time accurately similar to the FOU approach, but the CPR scheme suffers from loss of
accuracy after the breakthrough. We are working nowadays in the development of some strategies to overcome
the problem of the CVs associated with production well, to make the proposed methodology more accurate and
efficient.

5 Conclusions

In this paper, we have proposed a new methodology to simulate the incompressible two-phase flow of oil and
water in non-homogeneous and non-isotropic petroleum reservoirs in 2D domains using unstructured quadrilateral
meshes. In our new methodology, the two governing PDEs were solved using the classical IMPES formulation in
which, the elliptic pressure and the hyperbolic saturation equations were approximated by the i-MsCV scheme and
the CPR method, respectively. As the velocity field must present a proper degree of accuracy that, in general, is
not handed by multiscale methods, we have studied several smoothers, to successfully remove the high-frequency
components of the error and the residual. In order to evaluate our numerical formulation, we have solved two
problems found in literature. Our results are very promising, and in the near future, we intend to extend this
methodology for 3-D and more general compositional flows via h-p adaptive strategies.
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