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Abstract. It is important to consider the distinct hydraulic properties of the discontinuities and porous matrix in 
the numerical simulation of fluid flow in fractured porous medium. In this sense, many researchers have been 
proposed numerical models in the context of discrete fracture approaches. In general, numerical models with a 
discrete fracture representation present a large number of degrees of freedom to adequately represent the 
discontinuities, and as a consequence, requires high computational cost to solve the problem, even with a small 
number of fractures. The present work introduces an approach based on the use of coupling finite elements to 
consider the effect of the fractures in the simulation of steady-state fluid flow in fractured porous media. This 
scheme allows the independent discretization of fractures and matrix (overlapping non-matching meshes) without 
increasing the total number of degrees of freedom of the problem. Two examples are performed to demonstrate 
the versatility of the proposed model. 
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1  Introduction 

Petroleum is a natural occurrence of hydrocarbons and inorganic impurities, usually found in 
liquid or gas phases in a petroleum system (Fanchi and Christiansen [1]; and Alyafei [2]). In general, 
conventional resources are the most used petroleum system; however, as the demand for hydrocarbons 
has increased, unconventional resources gained particular importance on petroleum industry (Chengzao 
et al. [3]; Vedachalam et al. [4]; and Zhang et al. [5]).  

Reservoir rock is equally important for both petroleum systems, and consists of many pore spaces 
filled with oil, gas, or water. The presence of fractures in reservoir rocks can strongly influences the 
fluid pressure distribution since the discontinuities usually increase the permeability of the reservoirs. 
Thus, it is important to understand the fluid behavior in a fractured porous medium to petroleum 
industry. As consequence, many numerical techniques have been proposed to obtain the response of 
the system accurately. 

The numerical approaches available in literature for modeling fluid flow in naturally fractured 
porous medium can be classified in three main groups (Warren and Root [6]): continuum models, dual 
porosity models, and discrete fracture models. The continuum models replace the fractured porous 
medium by an equivalent continuum model adopting average properties (Jackson et al. [7]). This kind 
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of approach is usually applied in the simulation of large-scale problems. The dual porosity models treat 
the domain with a simplistic representation of complex fracture network, and the hydraulic properties 
of both fracture and porous medium are considered (Moinfar et al. [8]; and Zimmerman et al. [9]). 
Discrete models have been proposed for a more realistic representation of the fractures, since the 
fractures are represented individually in the porous domain. Despite the advantages of the explicit 
representation of the fractures, several models require that fracture and matrix elements share the same 
nodes in the interface of domains, which can be feasible for a problem with a single fracture, but 
cumbersome for a fracture network. This drawback can be solved using non-matching meshes. 
However, the classical models usually introduce a significant number of degrees of freedom and 
requires special integration schemes (Jiang and Younis [10]; Zhang et al. [11]; and Yang et al. [12]). 

This work proposes a new scheme approach based on the use of coupling finite elements 
(Bitencourt et al. [13]) to consider the effect of the fractures in the simulation of steady-state fluid flow 
in fractured porous media. The formulation is based on standard element shape functions to avoid 
particular integration procedures and without increasing the total number of degrees of freedom of the 
problem. 

 

2  Governing equations 

2.1 Fluid flow in porous medium 

In this work is considered a 2D fractured saturated porous medium with an incompressible single-
phase fluid.  In the absence of body forces and sinks (or sources), the continuity equation for the steady 
flow of an incompressible fluid phase over a fixed porous medium Ω is given by: 

 ∇. v = 0                                                   (1) 

The representative element volume fluid average velocity (v) in the equation above is described 
in this work by the Darcy’s law: 

 
v𝐦 = −

𝑘୫

𝜇
∇𝑝୫ 

                                                  
(2) 

 
where, 𝑘, μ and 𝑝 are the permeability, fluid viscosity and pressure, respectively. Finally, the 
standard form (Bear [14]) can be written by inserting equation (2) into equation (1): 

 
∇ ∙ ൬

𝑘୫

𝜇
∇p୫൰ = 0 

                                               
(3) 

 
To solve the latter equation, the following boundary conditions are considered: p୫ = �̅�  ∈  𝛤  and 

q୫ . 𝑛 = 𝑞ത ∈  𝛤 , where q୫ is the fluid flux and Γ = Γ ∪ 𝛤   is the boundary of the problem domain. 

 
2.1.1 Weak form and finite element discretization 

The weak form of the equation (3) can be obtained by multiplying the test function 𝑤 (which 
satisfies the essential boundary conditions), and integrating over the domain  Ω: 

 න 𝑤

ஐ

∇ ∙ ൬
𝑘୫

𝜇
∇𝑝୫൰൨ 𝑑Ω = 0   (4) 

 
The governing equations can be finally written, by applying the Divergence theorem and 

integrating by parts the equation (4): 
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− න ∇𝑤
𝑘୫

𝜇
∇p୫𝑑Ω + න 𝑤𝑞ത𝑑Γ

௰ஐ

= 0 

                      
(5) 

Herein, the equation (5) can be discretized in finite elements. Therefore, the pressure field in the 
porous domain can be approximated by: 

 p୫ = N୫pത୫ (6) 

where, N୫ and pത୫ are the shape functions and nodal pressures, respectively. In this work three-noded 
triangular finite elements are used in the discretization of the porous matrix domain. 

By replacing the equation (6) into equation (5), the following discretization equations are 
obtained: 

 K୫p = q୫ (7) 

where, 𝐾୫ is the permeability matrix of the porous medium, which can be written as: 

 K୫ = න B୫
 𝑘୫

𝜇
B୫𝑑Ω

ஐ

 (8) 

Bm  stands for the partial derivatives of the shape functions of the element, and 

 

q୫ = න N୫
𝑞ത𝑑Γ

ஐ

 

                                  
(9) 

2.2 Fluid flow in fracture domain 

Considering the same hypotheses and procedures developed for fluid flow in porous medium, and 
the discretization of the fractures in 1D finite elements, the permeability matrix for the discontinuity 
can be written as: 

 K = න B
 𝑘

𝜇
B𝑑Γ



 (10) 

where Bf stands for the partial derivatives of the shape functions of the 1D finite elements, and 𝑘 is 
the permeability of the fracture, for which a cubic law is employed in this work. 

 

3  Coupling non-matching meshes 

The equations (8) and (10) were developed independently. A strategy based on the use of coupling 
finite element is proposed in this work to consider the effect of the fractures in the simulation of steady-
state fluid flow in fractured porous media  

Fig. 1 (a) illustrates a problem of porous Ω and fracture Γ domains, and boundary surface Γ. 

Initially, porous domain and fractures are discretized in finite elements (Fig. 1(b)). Then, coupling 
finite elements, are inserted to establish the connection between the meshes (Fig. 1(c)) of the porous 
matrix and fractures, discretized initially in a totally independent way. In this work the porous matrix 
is discretized using three-noded triangular elements and the fractures are discretized using two-noded 
linear elements. So, four-noded triangular coupling elements (CFEs) are employed. A coupling element 
has the same nodes of an element of the porous matrix (base element), and an additional node (coupling 
node), herein designed by Cnode, which is the node of the fracture that belongs to the domain of the base 
element. It should be highlighted that the additional node will not require more degrees of freedom in 
the global system of equations and it can also be located anywhere inside the element, including along 
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its boundaries. 

 

Figure 1. Case 1: (a) Geometry and boundary condition, (b) mesh discretization and (c) scheme of coupling 
node. 

The vector that stores the pressure components of the CFEs can be written as: 

 𝑝
= [𝑝ଵ 𝑝ଶ 𝑝ଷ 𝑝] (11) 

Therefore, a relative pressure ⟦𝑝⟧ (or pressure drop) can be defined as the difference between the 
pressure of coupling node (Cnode), and the pressure evaluated using the shape functions of the CFE at 
material point (Xc) that corresponds to the coordinates of the Cnode: 

 
⟦𝑝⟧ = Bୡpୡ = 𝑝

−  N୧(Xୡ)

ଷ

ୀଵ

𝑝  

 

 (12) 

where,  

 𝐵 = [−Nଵ(Xୡ) −Nଶ(Xୡ) −Nଷ(Xୡ) 1] (13) 
 
Following the analogy between mechanical and hydraulic problems presented by Segura and 

Carol [15], the internal fluid flow vector can be defined as: 

 Qୡ
୧୬୲ = Bୡ

CBୡ𝑝  (14) 

 
and the permeability matrix of the CFE can be obtained by deriving the internal fluid flow vector with 
respect of pressure: 

 Kୡ = Bୡ
CBୡ 

 

(15) 

 
where C  is a constant penalty factor enforcing a null pressure drop, i.e. the compatibility between the 
porous matrix and fracture meshes. 

After the final configuration, the permeability matrix of the problem can be written as: 
 

 𝐾 = 𝐴ୀଵ

Ω (K୫)Ωౣ
+ 𝐴ୀଵ

 (K)
+ 𝐴ୀଵ

 (Kୡ)  

 

         (16) 

 
where A stands for the finite element assembly operator. The first and second terms of equation (16) 
are related to the domain of matrix and fractures, respectively and the third term is tied to introduction 
of CFEs. 
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4  Results 

4.1 Case 1: diagonal fracture 

The example carried out in this subsection was firstly studied by Zeng et al. [16] and was presented 
in Fig. 1. The single diagonal fracture is located at 𝑦 = 𝑥, 𝑥 ∈ (0.2, 0.8) embedded in the porous domain 
Ω  (0,1)ଶ. A specific pressure is applied on both bottom left (0.10 m), and upper right side (0.10 m), 
with following values  𝑝ଵ = 1 𝑀𝑃𝑎 and  𝑝ଶ = 2 𝑀𝑃𝑎. As reported by the authors [16], the permeability 
of the matrix and fracture are: 𝑘 = 10ିଵଶ 𝑚² and 𝑘 = 10ି଼ 𝑚², while the fluid viscosity of 𝜇 =

10ିଽ 𝑀𝑃𝑎. 𝑠 is used. 
Fig. 2(a) illustrates gradient pressure and as expected, the neighboring fracture domain influences 

the pressure distribution, which is a consequence of highly permeability of fracture over porous matrix 
permeability, since the fluid flow for preferential path of fracture. To a better visualization of this 
behavior, the pressure profiles along the lines y=0.2 m and y=0.5 m for both CFEs and the reference 
solution (phase field based discrete fracture model - PFDFM) are presented in Fig. 2(b) and (c), 
respectively. The results present very good concordance, and the pressure field has a continuum 
behavior; it means that overlapping meshes were coupled correctly. Furthermore, it is possible to 
analyze in Fig. 2 (b) that the non-uniformity of pressure distribution tends to increase next to fracture 
endpoint. On the other hand, for the fluid flow out of fracture there is a slight drop of pressure. This 
behavior is a consequence of different permeabilities in the whole domain, then it turns to increase 
slowly. Additionally, for the line y=0.5 m the pressure around fracture remains almost constant, which 
means the fluid flow is higher in that region (see Fig. 2 (c)).  

 

Figure 2. Results of (a) pressure field and pressure profiles at (b) y=0.2 m and (c) y=0.5 m. 

4.2 Case 2: fractured network 

With the purpose to validate the efficiency of numerical simulation using CFE, a benchmark 
presented by Flemisch, et al. [17] was simulated, using three different mesh refinements. The example 
consists of a regular fracture network embedded in the porous medium domain Ω(0,1)ଶ. Top and bottom 
boundary faces are impermeable (no flow), while the left boundary face has a constant fluid flow, 𝑞 =

1𝑚/𝑠, and the right boundary face is applied a pressure of 𝑝 = 1𝑀𝑃𝑎. The matrix permeability was 
stated at 𝑘 = 1, fracture permeability was stated at 𝑘 = 10ସ, and for fluid viscosity was employed 

𝜇 = 10ିଽ𝑀𝑃𝑎. 𝑠. 
Fig. 3(a) illustrates the geometry and boundary conditions. Fig. 3(b), (c) and (d) present the 

distinct mesh refinements studied. The number of degrees of freedom (DOFs) for each mesh are: 194 
DOFs for coarse, 415 DOFs for intermediate and 1442 DOFs for highly refined mesh. It is important 
to mention that the reference solution (mimetic finite differences - MDF) proposed by 
Flemisch et al. [17] uses 2.352.280 DOFs. 
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Figure 3. Case 2: (a) Geometry and boundary conditions and mesh discretization of (b) 0.09 m (coarse), (c) 0.06 
m (intermediate) and (d) 0.03 m (highly-refined). 

The solution of pressure gradient shows that the mesh refinement influences the fluid behavior in 
the left face of matrix domain (Fig. 4). As consequence, a desired discretization can guarantee the 
pressure field behavior of fracture and porous medium, accurately, with reduced computational cost.  

 

Figure 4. Pressure gradient of (a) coarse, (b) intermediate and (c) highly-refined mesh. 

Figure 5. Pressure profile at y=0.7 m. 

The pressure distributions of the three cases studied computed along the line y=0.7 m are plotted 
and compared with reference solution, which show good agreement, especially for the intermediate and 
highly-refined meshes, instead coarse mesh that presented an outstanding behavior at x=0.5 m (see 
Fig. 5).  The relative error of pressure at this coordinate using the three cases in comparison with MDF 
method is 0.43%, 0.33% and 0.21% for coarse, intermediate and highly-refined meshes, respectively.  
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5  Conclusions 

The present work proposes a new approach based on the use of coupling finite elements to consider 
the effect of the fractures in the simulation of steady-state fluid flow in fractured porous media.  

For this purpose, in the first example, a porous matrix with one embedded diagonal fracture was 
numerically analyzed. Both meshes are completely independents, using bar elements to represent the 
fracture and triangular elements to discretize the porous medium, which were properly coupled via 
CFEs.  The results validated the coupling approach and show that the pressure field has a continuum 
behavior between both domains, showing good agreement with the reference solution. In second  
example, a porous domain with vertical and horizontal fractures was studied, by assuming different 
mesh refinements. A good agreement between numerical results and reference solution was observed.  

Thereafter, it is possible to conclude that the technique is able to couple overlapping non-matching 
meshes of two different domains successfully without increasing the total number of degrees of freedom 
of the problem. 
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