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Abstract. Perishable product handling represents great challenge to supply-chain management. These items
have shorter shelf-life and most of them have special needs for transportation, storage and display. Inappropriate
treatment of these products, as well as the inability of the retailer to sell them within its shelf-life leads to waste
of products that affects the entire supply chain, society and environment. The trouble to manage these products is
to match the stock replenishment with its future demand and retail profits are significantly affected by perishable
losses. This paper proposes an approach of an one-step ahead forecasting for single time series using LSTM
Ensemble. The forecasts obtained by the proposed method yielded smaller forecasting error compared to the best
single LSTM, best single ARIMA and to the 12-month average sales - method commonly used by retail.

Keywords: Long Short-Term Memory, Ensemble, Autoregressive Integrated Moving Average, Forecasting, Sup-
ply Chain Management

1 Introduction

Perishable product handling represents great challenge to supply-chain management. These items have
shorter shelf-life and most of them have special needs for transportation, storage and display. Inappropriate treat-
ment of these products, as well as the inability of the retailer to sell them within its shelf-life leads to waste of
products that affects the entire supply chain, society and environment. According to the Brazilian Supermarket
Association [1], in 2018, these losses summed up to 1.89% of gross revenue and $1.53 billion in absolute numbers.
The most affected product categories are bread and bakery, sea food, meats, rotisserie, prepared foods, frozen
foods and produce. Together, these categories represent about 26% of the loss cost over the entire Brazilian retail
revenue.

The trouble to manage these products is to match the stock replenishment with its future demand. Overes-
timate the demand leads to financial resources stagnation; food wasting; unnecessary warehousing usage, energy
consumption and human resources allocation. On the other hand, underestimate the demand can cause invaluable
impact on the final consumer, growing dissatisfaction and leading to it to competitor store [2]. Small retailers can
rely only on average sales and, at most, apply simple supply-chain management techniques, such as economical
order quantity (EOQ) [3]. That policy implicates in higher safety stock and fixed warehouse cost. In opposition,
large retail chains can afford supply-chain management personnel responsible for forecasting future demand based
on the sales history for each product or group of product.

Inspired by that challenge, the main objective of this paper is to present a flexible, automatable and acces-
sible method for demand forecasting. In order to achieve that, the authors developed a solution that allows fast
replication of experiments from data preparation to the final forecast results. The proposed solution is based on
open source programming language and cloud-based processing environment for performing an one-step ahead
forecasting for single time series. Aiming at the reality of retail, all experiments were based on real sales data
available on Kaggle from a large Ecuadorian-based grocery retailer. In the experiments to be presented, two differ-
ent forecast predictors and its corresponding ensemble were compared to each other and to the 12-month moving
average sales - method commonly used by retail. The forecasts obtained by the proposed ensemble method yielded
smaller forecasting error compared to the best single sub-models predictors and to the 12-month average sales.
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2 Theoretical background

Since forecasting represent such an important role in business, researchers try to keep improving their meth-
ods. Makridakis open competitions are one the most important events in this field of study and help to evaluate and
compare state of the art with standard methods. The M4-Competition tested 61 forecast methods dividing them
into statistical and machine learning (ML) benchmarks and standards for comparison [4]. This section describes
the used time series forecast methods, the proposed ensemble method and the metrics used to evaluate models
performance.

2.1 Autoregressive Integrated Moving Average

The Autoregressive (AR) Integrated (I) Moving Average (MA), also known as ARIMA, was proposed by Box
and Jenkings [5] in their publication in 1970. A common way to denote an ARIMA model is by setting p, d and q
values. Being p the number of lagged observations included in the model; q, the number of times that difference
operation is applied to raw observations; and d, the size of the moving average window.

ARIMA is the most widely used method for time series forecasting due to its generality, simplicity and
various succeeded application evidences. Capable to deal with any kind of time series data [6], it is also one of the
two comparison standards from M4-Competition. When modeling a time series data set, the practical problem is
to choose p, d and q values to minimize forecast errors [7].

2.2 Long Short-Term Memory

State of the art of Machine Learning forecast methods, Long Short-Term Memory (LSTM) networks are a
special case of a Recurrent Neural Network (RNN). LSTM was first proposed by Hochreiter and Schmidhuber
[8] to solve the vanishing gradient problem caused by the gradient descent algorithm during the network weight
updating for long series. Because it is a neural network, LSTM can learn both linear and nonlinear relations from
data [9]. In addition, since the group of cells are able to maintain memory, the context of input values over time is
learned. The basic LSTM networks architecture - Vanilla LSTM - consists of a single LSTM layer and one fully
connected layer for regression. A LSTM layer, in turn, is based on cells units composed by tree elements defined
as gates: input gate (it), output gate (ot) and forget gate (ft). Each cell is fed with input value xt, previous cell’s
output ht-1 and previous cell’s state ct-1. From each cell derives the output ht and the cell’s state ct. Sigmoid and
hyperbolic tangent activation functions; summation, concatenation and convolution operations are executed inside
the cell. For mathematical formulation, see [10].

Recent papers has shown that it is possible to improve basic LSTM forecasts by applying feature engineering
to input data [11], implementing more complex architecture such stacked or multivariate LSTM [12], and mostly
by applying ensemble learning [13–15].

2.3 Ensemble learning

Ensemble learning aims to minimize forecast error by combining multiple predictors under a rule or a meta-
learner such as Linear Regression, Random Forests or Artificial Neural Networks [16, 17]. Ensemble strategies
can be classified in the following groups: bagging, boosting and Stacking. Bagging, also known as Bootstrap
Aggregation, consists of retraining a model by resampling the training data. It is Not very used in time series
applications due to the existing dependency on the sequence input data [18]. Boosting improves poorly predicted
values by increasing their input importance on the next predictor model’s training. Finally, Stacking combines
multiple forecasters as input for an upper layer model.

Multivariate Linear Regression (LR) for Ensemble Learning have been widely used for a long time [19, 20].
It consists of calculating the weights for each input variable that minimizes the overall error to corresponding
line (single input) plane (two dimensional) or hyper plane (high dimensional). Its usage for ensemble forecasters,
specially, LSTM models lacks of publications.

2.4 Evaluation

The choice of the right metric for forecasting evaluation is affected by a number of factors: presence of zero,
negative values and outliers; comparing different data sets and benchmark an experiment. The best approach is
usually to analyze the results based on multiple metrics.
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Scale-based methods can be used to compare different forecasters on the same data. For methods such as
Rooted Mean Squared Error (RMSE) and Mean Absolute Error (MAE), the resulting metric is in the same scale
as the data easing the interpretation. Despite (RMSE) is widely used, (MAE) is less sensible to outliers in the
forecasts results [21].

Scale-independent methods are important to evaluate same forecaster on different data sets. Methods such as
Mean Absolute Percentage Error (MAPE) and Mean Absolute Scaled Error (MASE), make possible to bench-
mark the experimented forecast model [22].

3 Proposed Solution

In this section all the steps will be presented to enable the implementation of the proposed model and run
the experiments to be described. The solution were developed using Python 3.7 on Google Colab as well as
TensorFlow, Keras and Scikit-Learn libraries for machine learning techniques.

3.1 Data Preparation

The experiments were based on real sales data available on Kaggle from a large Ecuadorian-based grocery
retailer: Corporación Favorita [23]. The data set contains point of sales of 4100 numbered items divided into
item families and item classes. All items are labeled as perishable or not. The sales are derived from 54 different
stores, from January 2013 to August 2017. The data set also contains complementary information such as: “on
promotion”, holiday calendar, oil price time series and clustering groups for the stores.

As in a real supply chain forecasting situation, there is a huge amount of data. Therefore, the data preparation
began by daily aggregating item sales per item, per store, and then filtering the desired data applying the following
sequence:

1. Keep only perishable items.
2. Keep topmost selling item class from each family.
3. Keep only time series, at least, 2 years long and missing no more then 2.5% values.
4. Select topmost selling items with 100% holiday matching for missing values.
5. Normalize data by scaling it from 0 to 1.
6. Treat outlier samples by replacing them with its three-sigma limit.

From the filtering presented above, the selected data set were Item 1083152 from Store 47 with total sales =
564.74, mean = 0.3361 and standard deviation = 0.2190. The time series and histogram plots from the
selected time series are shown in Figure 1.
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(a) Selected data set time series plot.
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(b) Selected data set histogram.

Figure 1. Selected data set time series plot and histogram.

3.2 Train, validation and test splitting

First, the time series were trimmed so the first day in the series were a Monday and the last day were a Sunday.
Following that, all the splitting were rounded to the next value that made the resulting data sets sizes divisible by
7 (a whole week). Respecting that condition and the hold-out split (70-30% ratio), the data set was divided in four
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groups at the end of the data set (most recent): Train set (105 days), Validation set (42 days), Test set (63 days),
Ensemble Test set (28 days).

As shown in the simplified diagram from Figure 2a, during the sub-models training, the Test Set is passed for
sub-models performance evaluation. This data set is also used for the ensemble train, therefore, during ensemble,
the Test Set will be referred as Ensemble Train Set. Then, the Ensemble Test Set is used to evaluate ensemble
performance as shown in Figure 2b.

(a) Data preparation and sub-models training and testing . (b) Ensemble training and testing.

Figure 2. Proposed method for sub-models and ensemble training and testing.

3.3 Sub-model

Two kinds of sub-models were trained: ARIMA and LSTM, 21 sub-models each.
The ARIMA models were generated by sweeping p, q and d from 0 to 5, 0 to 2 and 0 to 1, respectively.

Except from p,q,d = (0,0,0) and other impossible combinations.
The LSTM sub-models were modeled by changing the following parameters within intervals: input sequence

= [1, 2, 3, 4, 5] and number of LSTM cells = [8, 16, 32, 64, 128]. The other parameters were set as fixed: drop-
out = 0.3, batch size = 7, learning rate = 0.05, Adam optimizer, Training epochs = 100 and Mean Squared
Error as loss. Despite the learning rate and epochs fixed settings, both early stopping and reduce learning rate on
plateau were utilized as fitting callbacks.

3.4 Ensemble

The proposed ensemble method is a homogeneous combination via Stacking. Therefore, predictions from a
certain number sub-models of the same type will be combined accordingly to a choosing sequence.

The first parameter to be set is the number of sub-models K. In the following experiments, K were set from 2
up to 21 sub-models, yielding a total of 20 ensembles for each sub-model type. The proposed meta learner for the
ensemble is Linear Regression (LR). The Ensemble must be fed with the K sub-models forecasts as a sequence,
ŷ, for Ensemble Training. The LR model also requires the real values, y, in order to calculate the weigh for each
element in the input sequence that minimizes the residual sum of squares between the forecasts and the actual
values, as stated by Equation 1. The pseudo-code for the LR ensemble method is described in Algorithm 1.

argmin
W

∑K
k=2 ‖y − ŷk ∗W‖2 (1)

As stated before, the sub-models selection for ensemble were not at random. First, the sub-model with
lower Ensemble Train loss is picked. Then, other the sub-models were chosen based on a heuristic that search for
minimum loss; maximum Ensemble Train predictions and real values correlations; and minimum Ensemble Train
predictions correlations with previous selected sub-models.
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Algorithm 1 Linear Regression Ensemble

1: procedure Wk(ŷ1, ŷ2, ...ŷK ; y) . Ensemble Train Set
2: Given: ŷtk, yt, t = (1...T ) and k = (1...K)
3: ŷ = concatenate(ŷ1, ŷ2, ..., ŷK)
4: W = initialize(W, size = K × 1)
5: W = Equation 1 (ŷ,W, y)

6: procedure ŷe(ŷ1, ŷ2, ...ŷK ;W ) . Ensemble Test Set
7: Given: ŷtk, t = (1...T ) and k = (1...K)
8: ŷ = concatenate(ŷ1, ŷ2, ..., ŷK)
9: for t = 1 : T do

10: ŷte = ŷt ∗W

3.5 Experiments evaluation

The preliminary comparison of sub-models will be based on the loss derived from training. As stated in
Section 3.3, the loss function set was Mean Squared Error (MSE) which is obtained by Equation 2. For deeper
analysis on the results, normalized forecasts of all sub-models, ŷ, and ensemble models, ŷe, will be evaluated by its
Rooted Mean Squared Error (RMSE), given by Equation 3, and Mean Absolute Error (MAE), given by Equation
4, compared to the 12-Month moving Average.

Those metrics will provide information on the accuracy of the forecasts and the presence of outliers in the
results. Furthermore, since the metrics will be calculated based on normalized data, all metrics can be considered
scale-independent enabling comparison between different data sets and also benchmark the proposed method.

MSE = 1
T ∗

∑T
t=1(yt − ŷt)

2 (2)

RMSE =
√
MSE (3)

MAE = 1
T ∗

∑T
t=1 |yt − ŷt| (4)

4 Discussion on Results

Table 1 displays the MSE resulting from ARIMA and LSTM sub-models predictions over Ensemble Train
Set. As expected, LSTM out-performs the ARIMA sub-models. The performance of the best sub-models and
ensemble for each sub-models type are compared to the 12-Month moving Average by its RMSE and MAE over
Ensemble Test Set in Table 2.

Analyzing these results, it is clear that a direct application of ARIMA to forecast the experimented data set
is not a good strategy. The best ARIMA sub-model performed worst then the 12-Month moving average. The
proposed method for ensemble were successful on improving the base sub-models predictions RMSE in both
ARIMA (19.29%) and LSTM (2.77%).

Table 1. Sub-models pre-ensemble MSE statistic describing.

Count Mean Std Min 25% 50% 75% Max

ARIMA 21 0.042107 0.018361 0.025362 0.032569 0.036610 0.042107 0.107552

LSTM 21 0.029286 0.008151 0.017876 0.024210 0.027944 0.033120 0.048814

The overall best results derived from the 10 LSTM sub-models ensemble: RMSE = 0.130002. Although
the corresponding MAE for the ensemble did not improve over base sub-model (−1.66%), the combination of
these results indicates that the magnitude of the forecasting errors were smaller but more frequent, as indicated by
Figure 3.
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Table 2. Predictors ensemble Test set performance compared to 12-Month moving average.

RMSE
Improv. over

12-Month Avg [%]
MAE

Improv. over

12-Month Avg [%]

12-Month Avg 0.171317 - 0.377965 -

Best ARIMA 0.180468 -5.34 0.391155 -3.49

7-ARIMA-LR 0.14565 14.98 0.330836 12.47

Best LSTM 0.133699 21.96 0.312730 17.26

10-LSTM-LR 0.130002 24.12 0.317909 15.89
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(a) Actual values versus best LSTM and ensemble forecasts.
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(b) Actual values versus best LSTM and ensemble residuals.

Figure 3. Actual values versus best LSTM and ensemble.

Apart from data preparation described in Section 3.1, the elapsed time from loading the selected data set,
training and testing the 21 sub-models were 310 seconds for ARIMA and 238 seconds for LSTM. The average
time required for training and testing all 20 ensemble combinations of sub-models predictions, from 2 up to 21
sub-models, were 0.35 seconds for ARIMA and 2 seconds for LSTM.

5 Conclusion

Forecasting is a key activity in supply-chain management (SCM). Farms, industries and retail must be able to
predict future demand and resource availability to assist the decision making process and respond quickly in order
to succeed in their operations. In the end, the decision about the whether to forecast the demand or just apply the
12-Month moving average should be a cost-benefit analysis on the availability and delivery time of the product;
the cost for keeping and purchasing; and the level of perishability of the product.

The proposed method not only improves the accuracy of both benchmark forecasting methods, but it is also
quite fast and simple to replicate for as many stock-keeping units (SKU) as the SCM personnel judges to be
necessary. Although the LSTM sub-models training required some expertise for tuning its hyper-parameters, once
it is defined by a specialist, the process can be repeated just as simple as it was for the ARIMA sub-models. Also,
as expected for an ensemble model, the proposed method showed better potential for improving weak forecasters.
Therefore, even for poorly tuned LSTM, the method may yield significant improvement.

Despite the success of the ensemble method, it showed potential for improvement hence the field of study
is not widely explored. As a continuity of the research, it is possible to test more LSTM settings by including
more hidden layers, trying other optimization methods and setting other hyper-parameters. Besides, a Multivariate
LSTM implementation combining the target input series with the corresponding item price time series may yield
even better results. About the ensemble method, it is possible to test other meta learners, especially machine
learning methods, such as Random Forest and Multilayer Perceptron.

Being a decision making tool for assisting SCM, it would be important to test the extrapolation capability of
the ensemble method by experimenting the procedure and hyper-parameters on a different store or even a different
item time series. Yet, although it is very fast and automatable, if the items and stores could be clustered and
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still present satisfactory results, the reduction of the computational infrastructure required would ease the retailers
decision to implement the forecasting method for all SKU’s.
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