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rhanccoan@unsa.edu.pe, jaynayanquep@unsa.edu.pe, rcondorib@unsa.edu.pe, evelasquezcon@unsa.edu.pe, rmes-
tasc@unsa.edu.pe, fmamani5@unsa.edu.pe

2Dept. of Basic Sciences, FZEA, University of São Paulo, Brasil
Av. Duque de Caxias Norte 225, Campus Fernando Costa, USP, CEP 13635-900, Pirassununga, SP, Brasil
jorge.calle@usp.br

Abstract. The enriched mixed method is a variant of the mixed finite element method, obtained through a selection
and appropriate configuration of the shape functions in the space of flux approximation, increasing the order
of approximation just inside the elements, taking care of the balance with the space of approximation of the
potential. The purpose of this paper is to analyze this method in the context of the Poisson equation. For spaces
of approximation of various orders, we carry out numerical simulations considering two model problems: smooth
(low oscillation and low gradient) and strongly oscillatory, in quadrilateral meshes. We conclude that the enriched
mixed method of order p achieves a precision practically equivalent, with lower computational cost, to the mixed
method of order p+ 1.
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1 Introduction

Various engineering problems are modeled by second-order elliptic equations with boundary conditions. The
Poisson equation is a prototype that preserves essential characteristics of this class, which is why it is often used
to validate new numerical methods [1]. The classical formulation according to is the most used to solve problem
1, however, in many engineering problems the flux is of greater interest than the primal variable (potential), so
processes are usually applied indirect to find the flux by calculating the gradient of the number solution of the
potential; with the consequence of obtaining an approximation of the flux with lower quality than the approxima-
tion of the potential, see for example the analysis carried out in [2]. The classical mixed finite element method
reformulates equation 1 incorporating the flux as an additional variable, which allows to obtain simultaneously
the numerical solution of the primal (potential) and dual (flux) variables. In this paper, in the field of the finite
element method (FEM) with meshes of quadrilateral elements, we study the enriched mixed method, proposed by
Devloo [3], comparing the errors generated with its use, with the errors obtained when applying the mixed method
[4, 5] and the classical method of finite elements. In order to reduce the computational cost, the experiments are
carried out applying adequate static condensation to each method one of the three methods. For the experimenta-
tion we use the NeoPZ computational environment [6, 7], which allows the implementation of algorithms in finite
elements. In [1, 3, 8] characteristics of the order of approximation are presented, among others, we also validate
some of their conclusions and increase an analysis from the point of view of the order p. For the experiments we
considered two model problems with known exact solutions and representative behaviors: smooth (low oscillation
and low gradient) and strongly oscillatory. The paper is organized as follows. The description of computational
tools and static condensation are set in section 2. The three finite elements methods used are described in section 3
and the two model problems in section 4. The seccion 5 contains the results of the numerical experiments. Seccion
6 concludes this paper.
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2 Computational aspects

2.1 NeoPZ environment

NeoPZ (originally PZ) (https://github.com/labmec/neopz) is a general-purpose finite element
library organized in modules, open source. It uses advanced object-orientation techniques to implement a wide
family of FEM technologies, with the purpose of carrying out numerical simulations of processes originating from
various fields of engineering, based on in mathematical models represented by differential or integro-differential
equations. During its continuous development, for approximately 30 years, more FEM technologies were incorpo-
rated: approximation spaces, hp-adaptivity tools, new types of geometric elements, new variational formulations,
among others, which allowed the incorporation of features such as multiscale and multiphysic [6, 7, 9, 10] which
has increased their ability to manipulate increasingly complex mathematical models, to obtain more complex sim-
ulations close to reality. Some of the simulations carried out in NeoPZ are: flow in porous media, hydraulic
fractures, oil reservoirs, dynamics of the grounding line in sea ice layers [11–14]. The bases of the higher order
approximation spaces for the flow and potential are implemented in a hierarchical way and designed for the man-
agement of conforming or non-conforming hp meshes in dimensions 1, 2 and 3 [5, 15]. In dimension 3, it has
implemented elements hexahedrons, tetrahedrons, prisms and even pyramids [16].

2.2 Static condensation

The need to carry out numerical simulations of increasingly complex phenomena has an effect on the increase
in the complexity of the mathematical models used in engineering, causing a high computational cost, which
persists in leaving lagging behind the continuous and rapid technological increase in processing speed and storage
capacity of hardware. One way to reduce this effect is to apply clever degrees of freedom reduction maneuvers in
the system of equations. Static condensation is a technique used, appropriately for the method, within the scope
of the FEM. In this paper, for each method, we respectively use the static condensation techniques described in
[1, 3, 17].

3 Methods

The Poisson equation to be studied is given by:

−∆u = f en Ω y u = g en Γ = ∂Ω (1)

The approximation spaces that we consider are piecewise polynomial functions, more specifically, given a partition
with quadrilateral elements τh = {K} de Ω, the approximation space for u (potential) they are subspaces of
Uh =

{
p ∈ L2 (Ω,R) : p|K ∈ Pk (K,R) , K ∈ τh

}
, where Pk (K,R) is a space of polynomials of maximum

degree k in each coordinate.

3.1 Classical finite element method

Given an approximation space Uh ⊂ H1 (Ω), the classical variational formulation H1(Ω)-as discretized is
given by: find uh ∈ Uh ∩H1 (Ω) such that uh|Γ = g and∫

Ω

∇uh · ∇vh dΩ =

∫
Ω

fvh dΩ, ∀vh ∈ Uh ∩H1
0 (Ω)

The approximation spaces Uh ⊂ H1 (Ω) that we use are hierarchical, constructed in [15].

3.2 Mixed finite element method

Introducing the additional unknown σ = −∇u in Poisson’s equation 1, we obtain the system

σ = −∇u en Ω

∇ · σ = f en Ω y u = g en Γ = ∂Ω

known as a mixed formulation of equation 1, which allows to obtain simultaneously the numerical solution of the
primal (u) and dual (σ) variables. For a decomposition τh = {K} of Ω, consider the approximation subspaces of
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finite dimension Vh ⊂ H (div,Ω) and Uh ⊂ L2(Ω), the corresponding discrete mixed variational formulation is
given by: find (σh, uh) ∈ Vh × Uh such that∫

Ω

σh · vh dx+

∫
Ω

uh∇ · vh dx =

∫
Γ

gvh · η ds, ∀vh ∈ Vh∫
Ω

wh∇ · σh dx =

∫
Ω

fwh dx, ∀wh ∈ Uh

where η is the normal field to Γ, unitary and pointing outward.
It is known that the selection of pairs of approximation spaces (Vh, Uh) must be carried out in a balanced way, to
avoid instability or blocking phenomena [5, 18]. In this paper we use the construction of balanced approximation
spaces of higher order and hierarchical proposed in [5], in it the functions of form vector σh ∈ Vh and the scalar
form functions uh ∈ Uh are constructed on each element K, from the corresponding polynomial spaces V̂ y Û

defined on a master element K̂. Furthermore, the flux approximation space has the structure V̂ = V̂ ∂ ⊕ ˚̂
V , where

˚̂
V , is generated by functions of form polynomial vectors whose normal component vanishes at the sides of the
element (vector functions of type interior) and V̂ ∂ is generated by polynomial vector shape functions associated to
the sides of the element, whose normal components do not vanish.

3.3 Enriched mixed finite element method

This method was proposed in [3, 19] and consolidated in [8], in which two new balanced pairs of approxi-
mation spaces are proposed for the potential and the flux, one for triangular meshes and the other for quadrilateral
meshes. In the case of quadrilateral meshes, these spaces can be interpreted as enriched versions of Raviart-Thomas
RTk spaces[4]. Enrichment procedures are applied by space increments using additional bubble terms. These bub-
ble terms are scalar functions supported by a single element (in the case of H1-conformal approximations) or
vector functions whose normal components vanish at the edges of the elements (in the case of H(div)-compliant
spaces). The advantage of using bubbles as stabilization correctors is based on the fact that all the corresponding
degrees of freedom can be condensed, so that the number of equations to be solved and the structure of the matrix
are not affected. by the enrichment process [8]. In this paper, we consider enriched approximation spaces for flux

and potential structured respectively as follows: V̂ 1+
k = V̂ ∂k ⊕

˚̂
Vk+1 y Û1+

k = ∇ · V̂ 1+
k

4 Model problems

For numerical experiments, we consider two model problems of the Poisson equation 1, with exact solution,
each one with a homogeneous Dirichlet boundary condition on the domain Ω = [−1, 1] × [−1, 1]. These prob-
lems respectively have the following representative characteristics: smooth (low oscillation and low gradient) and
strongly oscillatory.

(a) Smooth solution (b) Strongly oscillating solution

Figure 1. Exact solutions to model problems
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For the Poisson equation 1, the problem with smooth solution that we consider has an exact solution:
u(x, y) = sin(πx) sin(πy). Figure 1a. The problem with strongly oscillatory solution that we take has the exact
solution: u(x, y) = 0.4 sin(9πx)(1 + cos(9πy))

(
π
2 + arctan(10− 200(x2 + y2))

)
. Figure 1b.

5 Numerical results

To validate the ideas discussed in this paper the numerical experiments for the three methods were performed
in a Macbookpro with a six-core Intel Core i7 processor (2.2GHz), 16 GB of DDR4 2400 MHz ram memory. We
have used the NeoPZ library to implement a finite element numerical simulation program, In this section, we show
results for three experiments.

5.1 The smooth model problem: h-refinement

The soft model problem was solved by applying the three methods considered in section 3; for orders p = 2;
3 and 4. The convergence rates for the variable u in L2 are shown in tables 1, 2 and 3. It is observed that the
theoretical convergence rates are achieved.

Table 1. Errors and convergence rates for u in the smooth model problem with h-refinement and p = 2

Classic FEM Mixed Enriched Mixed

h

Error

in L2

Convergence

rate

Error

in L2

Convergence

rate

Error

in L2

Convergence

rate

0.25000 3.86E-03 - 2.14E-03 - 1.25E-04 -

0.12500 4.90E-04 2.9787 2.69E-04 2.9921 7.90E-06 3.9813

0.06250 6.15E-05 2.9950 3.37E-05 2,9980 4.95E-07 3.9951

0.03125 7.69E-06 2.9988 4.21E-06 2.9995 3.10E-08 3.9988

Table 2. Errors and convergence rates for u in the smooth model problem with h-refinement y p = 3

Classic FEM Mixed Enriched Mixted

h

Error

in L2

Convergence

rate

Error

in L2

Convergence

rate

Error

in L2

Convergence

rate

0.25000 1.76E-04 - 1.06E-04 - 4.52E-06 -

0.12500 1.11E-05 3.9854 6.66E-06 3.9933 1.41E-07 4.9994

0.06250 6.97E-07 3.9963 4,17E-07 3.9983 4.42E-09 4.9999

0.03125 4.36E-08 3.9991 2.61E-08 3,9996 1.38E-10 5.0000
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Table 3. Errors and convergence rates for u in the smooth model problem with h-refinement and p = 4

Classic FEM Mixed Enriched Mixed

h

Error

in L2

Convergence

rate

Error

in L2

Convergence

rate

Error

in L2

Convergence

rate

0.25000 6.70E-06 - 4.19E-06 - 1.48E-07 -

0.12500 2.11E-07 4.9906 1.32E-07 4.9942 2.33E-09 5.9911

0,06250 6,60E-09 4.9976 4.11E-09 4.9985 3.64E-11 5.9977

0,03125 2,06E-10 4.9993 1.29E-10 4.9996 5.70E-13 5.9994

5.2 The strongly oscillatory model problem: p-refinement

Considering a refined mesh with h = 0.0625, the strongly oscillatory model problem was solved by applying
the three methods described in section 3. For p-refinement, in table 4 the numerical results are shown, respectively,
of the errors in L2 for u and H1. In addition, for comparison purposes, we select the respective p orders in each
method; as highlighted in dark gray. Table 5 shows the respective condensed degrees of freedom. In Figures 2 and
3 we show a comparison of the convergence curves as a function of p-refinement.

Table 4. p-refinement for the strongly oscillatory model with h = 0.0625

Error for u in L2 Error in H1

p Enriched Mixed Mixed Classic FEM Enriched Mixed Mixed FEM

1 4.25E-02 2.26E-01 2.44E-01 2.196 3.234 7.663

2 3.65E-02 4.15E-02 2.17E-01 1.455 1.965 3.981

3 2.86E-02 3.65E-02 3.68E-02 0.942 1.435 2.026

4 6.73E-03 2.86E-02 3.65E-02 0.609 0.939 1.687

5 5.32E-03 6.73E-03 2.84E-02 0.410 0.608 1.044

6 4.99E-03 5.32E-03 6.65E-03 0.271 0.409 0.717

7 3.43E-03 4.99E-03 5.30E-03 0.185 0.271 0.461

8 - 3.43E-03 4.87E-03 - 0.185 0.322

9 - - 3.41E-03 - - 0.210

Figure 2. Error of u in L2 norm for the strongly oscillatory model with h = 0.0625
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Table 5. Degrees of freedom through p-refinement for the strongly oscillatory model with h = 0.0625

Degrees of Freedom Condensed

p Enriched Mixed Mixed Classic FEM

1 5248 5248 1089

2 7360 7360 3201

3 9472 9472 5313

4 11584 11584 7425

5 13696 13696 9537

6 15808 15808 11649

7 17920 17920 13761

8 - 20032 15873

9 - - 17985

Figure 3. Error in norm H1 for the strongly oscillatory model with h = 0.0625

6 Conclusions

This paper has used an empirical approach to compare the performance of three methods in finite element
methods. This contribution is important to establish a benchmark when using a method and obtain low computa-
tional costs without affecting the precession in a high way.

For the problem with a strongly oscillatory solution approached, the enriched mixed method of order p has a
lower computational cost than the mixed method of order p+ 1, since, at the master element level, the former has
fewer polynomial vectors associated to the sides of the element. However, in the potential variables, their errors
in the L2 norms are practically the same. On the other hand, for the H1 error, the p order rich mixed method is
slightly less accurate, in thousandths, than the p + 1 order mixed method; which is reasonable, because, on the
master element, the first one has fewer vector polynomials in the flow.

Likewise, in the case of the classical finite element method od order p + 2, for the highly oscillatory model
problem, we observe that the approximation error for the variable u in the norm L2 is practically the same as that
the enriched mixed method of order p, being relegated in the case of the error in norm H1 because, in this case,
the flux calculation is carried out indirectly.
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