
 
 

CILAMCE 2020 

Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC  
Foz do Iguaçu/PR, Brazil, November 16-19, 2020 

Computational algorithm for geometrically nonlinear analysis of 

laminated composite frames with zig-zag enhancement of the 

transverse strain field  

Caio C. L. G. Bernardo1, Humberto B. Coda1, Rodrigo R. Paccola1 

1Dept. of Structural Engineering, São Carlos School of Engineering, University of São Paulo 

Av. Trab. São Carlense, 400, 13566-590, São Carlos, São Paulo, Brazil 

caiolacava@usp.br, hbcoda@sc.usp.br, rpaccola@sc.usp.br 

Abstract. Laminated composite materials are widely used in engineering applications due to the high control 

and flexibility over the design of its mechanical properties. It is known, however, that when subjected to loads, 

structural elements made of laminated composites display a zig-zag pattern on their strain field in the transverse 

direction, behaving differently from the usual assumption that considers transverse sections as planes after the 

load application for calculation purposes. Therefore, this work proposes the implementation of a finite element 

method computational algorithm, based on positions, that numerically solves laminated composite frames by 

enhancing the strain field in the transverse direction. The first order shear deformation theory (FSDT) adapted 

for generalized vectors is used as the basic kinematic assumption, and then enhanced by a normalized zig-zag-

shaped function multiplied by an amplitude factor, which is a new nodal degree of freedom. In addition, the 

cross section direction and height variation are represented by generalized vectors, which are also nodal degrees 

of freedom. The developed formulation is total Lagrangian, comprising large displacements and rotations, and 

uses the Saint-Venant-Kirchhoff constitutive law, which allows moderate strains. 

Keywords: Zig-zag enhancement, Geometrically nonlinear analysis, Positional FEM, Laminated composites. 

1  Introduction 

During the development of engineering technologies, the need for materials with specific properties became 

usual. However, some of these properties may not be obtained from pure materials in nature. For that reason, 

different components were combined on a macroscopic scale to create new materials with specific characteristics 

to supply its design task. This process originates unique materials known as composites. According to Jones [1], 

if the composite material is well designed, it can display not only the best property of its constituents, but also 

unique properties that they do not exhibit apart. Some of the characteristics that can be enhanced are strength, 

stiffness, weight, fatigue live, thermal insulation, thermal conductivity, wear resistance and corrosion resistance. 

Laminated composites, as stated by Jones [1], are widely used in the industry due to its capability of 

owning high strength-to-weight and stiffness-to-weight ratios. As the name suggests, they are made of different 

layers stacked and bonded together. Reddy [2] explains that a layer, also known as lamina or ply, is a sheet of 

material that can be described as a fundamental building block for the laminate. As a result, this type of 

composite presents different properties along the transverse direction, which leads to an effect in the in-plane 

displacement field known as zig-zag. 

There are many theories to predict the mechanical behavior of laminated composite structures. According 

to Carrera [3], Carrera and Ciuffreda [4] and Sayyad and Ghugal [5], the equivalent single-layer theories (ESL) 

usually work fine for global behavior and require less computation effort than other theories. However, they 

cannot exhibit the zig-zag kinematic and display discontinuous transverse stresses. Some researches like 

Meunier and Shenoi [6], Liu and Paavola [7] and Wang et al. [8] are examples of ESL implementation. Carrera 

[3] and Carrera and Ciuffreda [4] mention that the layerwise theories (LW), on the other hand, can model the 
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zig-zag effect at the cost of more computation effort. That happens because each layer is modeled independently 

and the number of unknowns increases with the number of layers. According to Sayyad and Ghugal [5], its 

results are usually close to the three-dimensional elasticity solutions. Some examples of layerwise theories 

application can be found at Robbins and Reddy [9] and Tahani [10]. 

As an alternative, Coda et al. [11] proposed a positional formulation for laminated plates and shells with 

generalized vectors to model the transverse lines direction. The formulation uses a kinematic similar to the 

Reissner-Mindlin one (ELS), but it is enhanced by a precomputed constant zig-zag profile and has transverse 

stress regularization. 

As an improvement of the work presented by Coda et al. [11], this paper presents a positional formulation 

that includes the zig-zag effect as a nodal degree of freedom for 2D laminated composite frames, including this 

behavior in the energy minimization process. The presented formulation is a geometrically nonlinear total 

Lagrangian approach and uses the Saint Venant-Kirchhoff constitutive law, which allows moderate strains. It is a 

promising strategy from which the stress regularization and the generalization to shell applications are the next 

research goal. 

2  Formulation 

The presented positional formulation uses positions and generalized vectors as nodal unknowns instead of 

displacements and rotations. In derivations the layers are perfectly attached to each other, the strains are small, 

each layer is perfectly homogeneous, the thickness of each layer is constant throughout the element in the initial 

configuration, the cross sections are rectangular and the external forces are conservative. 

2.1 Mapping and deformation function 

The reference line of frame elements is approached by third order Lagrange polynomial interpolation and is 

positioned at the stiffness center of the laminate. Any point in a specific element layer can be found at the non-

deformed configuration by the following mapping function: 

 𝑓𝑖
0𝑘(𝜉1, 𝜉2

(𝑘)
) = 𝑥𝑖

𝑘 = 𝜙ℓ(𝜉1)𝑋𝑖
ℓ + (

ℎ𝑘

2
𝜉2

(𝑘)
+ �̅�𝑘 − �̅�𝑐𝑔) 𝜙ℓ(𝜉1)𝑉𝑖

ℓ, (1) 

where 𝑓𝑖
0𝑘 is the i-th coordinate of the initial mapping function for layer 𝑘, 𝑥𝑖

𝑘 is the i-th coordinate of the initial 

position of a point in layer 𝑘, 𝑋𝑖
ℓ is the i-th initial coordinate of the reference line node ℓ, ℎ𝑘 is the initial 

thickness of layer 𝑘, �̅�𝑘 is the distance between the cross section bottom surface and the center of the 𝑘-th layer, 

�̅�𝑐𝑔 is the coordinate of the cross section stiffness center measured from its bottom surface, 𝑉𝑖
ℓ is the coordinate 𝑖 

of the node ℓ initial generalized vector, 𝜉1 and 𝜉2
𝑘 are the dimensionless coordinates from the isoparametric 

domain and 𝜙ℓ is the shape function related to node ℓ. 

Like eq. (1), there is another mapping function related to the current configuration of the structure. To make 

it simpler, the sum of the three terms in eq. (1) inside the parentheses will be called 𝜂𝑘(𝜉2
(𝑘)

). Thus, the current 

configuration mapping function can be written as: 

 
𝑓𝑖

1𝑘(𝜉1, 𝜉2
(𝑘)

) = 𝑦𝑖
𝑘 = 𝜙ℓ(𝜉1)𝑌𝑖

ℓ + [𝜂𝑘(𝜉2
(𝑘)

) + 𝜙ℓ(𝜉1)�̅�ℓ ∙ 𝜂𝑘(𝜉2
(𝑘)

)
2

] 𝜙ℓ(𝜉1)𝐺𝑖
ℓ 

+𝜙ℓ𝑍ℓ(𝒶𝑘𝜉2
(𝑘)

+ 𝒷𝑘)(−1)𝑖+1𝜙𝑗𝐺3−(𝑖)
𝑗 , 

(2) 

where 𝑓𝑖
1𝑘 is the i-th coordinate of the current mapping function for layer 𝑘, 𝑦𝑖

𝑘 is the i-th coordinate of the 

current position of a point in layer 𝑘, 𝑌𝑖
ℓ is the i-th current coordinate of the reference line node ℓ, �̅�ℓ is a nodal 

parameter to introduce linear behavior to the transverse strain in order to avoid volumetric locking as studied by 

Bischoff and Ramm [12], 𝐺𝑖
ℓ is the coordinate 𝑖 of the current generalized vector related to node ℓ, 𝑍ℓ is the 

magnitude of the zig-zag enhancement profile at node ℓ and (𝒶𝑘𝜉2
(𝑘)

+ 𝒷𝑘) is the normalized zig-zag profile. It 

is important to note that the last term of eq. (2) is the original contribution of this work. 

Relying on eq. (1) and eq. (2), the deformation function can be expressed as: 

 𝑓(𝑥1, 𝑥2) = 𝑓1(𝑓0
−1

(𝑥1, 𝑥2)), (3) 
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and Fig. 1 displays the deformation and mapping process of a finite element. 

 

Figure 1. Deformation and mapping functions  

The gradient of the deformation function 𝑨 can be written, considering eq. (3), as: 

 𝑨 = 𝑨1 ∙ (𝑨0)−1, (4) 

where 

 𝐴𝑖𝑗
0 =

𝜕𝑓𝑖
0

𝜕𝜉𝑗
       and       𝐴𝑖𝑗

1 =
𝜕𝑓𝑖

1

𝜕𝜉𝑗
. (5) 

2.2 Zig-zag enhancement profile 

The zig-zag enhancement profile is composed by line segments defined by layer. Each layer has 2 

unknowns: 𝒶𝑘 and 𝒷𝑘. To determine them, however, the expression 𝒶𝑘𝜉2
(𝑘)

+ 𝒷𝑘  is first converted to 𝑎𝑘�̅� + 𝑏𝑘, 

where �̅� is the height of a point measured from the cross section bottom surface. Therefore, 𝑎𝑘 and 𝑏𝑘 are 

calculated and then converted back to 𝒶𝑘 and 𝒷𝑘. If the laminate has 𝑛 layers, 2𝑛 equations are needed. 

The first 𝑛 − 1 equations impose continuity between adjacent layers: 

 𝑎𝑘 (�̅�𝑘 +
ℎ𝑘

2
) + 𝑏𝑘 = 𝑎𝑘+1 (�̅�𝑘 +

ℎ𝑘

2
) + 𝑏𝑘+1,   1 ≤ 𝑘 ≤ 𝑛 − 1. (6) 

Furthermore, it is assumed that the zig-zag profile does not generate normal force or bending moment 

resultants. In these circumstances and knowing that the profile is qualitative only, two equilibrium equations can 

be written: 

 ∑ ∫ (𝑎𝑘�̅� + 𝑏𝑘)𝔼𝑘𝑑�̅�
ℎ𝑘

𝑛

𝑘=1

= 0, (7) 

 ∑ ∫ �̅�(𝑎𝑘�̅� + 𝑏𝑘)𝔼𝑘𝑑�̅�
ℎ𝑘

𝑛

𝑘=1

= 0, (8) 

where 𝔼𝑘 is the Young’s modulus of the 𝑘-th layer. 

Finally, the last 𝑛 − 1 equations are obtained from the relationship between slopes of adjacent layers. This 

expression was suggested by Coda et al. [11] after observing analytical solutions available in literature: 
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 𝑎𝑘 − 𝑎𝑘+1 =
𝔼𝑘ℎ(𝑘)

3 − 𝔼𝑘+1ℎ(𝑘+1)
3

(�̅�𝑘 +
ℎ𝑘

2
− �̅�𝑐𝑔) (𝔼𝑘ℎ(𝑘)

3 + 𝔼𝑘+1ℎ(𝑘+1)
3 )

, 1 ≤ 𝑘 ≤ 𝑛 − 1. (9) 

Thus, the constants 𝑎𝑘 and 𝑏𝑘 can be converted back to 𝒶𝑘 and 𝒷𝑘 using the following equations: 

 𝒶𝑘 =
𝑎𝑘ℎ(𝑘)

2
     and    𝒷𝑘 = 𝑎𝑘�̅�(𝑘) + 𝑏𝑘 . (10) 

2.3 Equilibrium equations 

In this research, the equilibrium equations are achieved by the Principle of Stationary Mechanical Energy. 

The total mechanical energy Π is the sum of the total strain energy 𝕌, the potential energy of external forces ℙ 

and the kinetic energy 𝕂. As this work focuses only on static analysis, the kinetic energy term is not considered. 

In that perspective, the equilibrium occurs when: 

 𝛿𝛱 = 𝛿𝕌 + 𝛿ℙ = (
𝜕𝕌

𝜕�⃗⃗�
+

𝜕ℙ

𝜕�⃗⃗�
) 𝛿�⃗⃗� = 0 ∴

𝜕𝛱

𝜕�⃗⃗�
=

𝜕𝕌

𝜕�⃗⃗�
+

𝜕ℙ

𝜕�⃗⃗�
= 0⃗⃗, (11) 

where �⃗⃗� is a vector with all the nodal parameters. 

The total strain energy 𝕌 and its derivative with respect to �⃗⃗� are, respectively: 

 𝕌 = ∫ 𝑢𝑒𝑑𝑉0
𝑉0

, (12) 

 
𝜕𝕌

𝜕�⃗⃗�
= ∫

𝜕𝑢𝑒

𝜕�⃗⃗�
𝑑𝑉0

𝑉0

= ∫
𝜕𝑢𝑒

𝜕𝑬
:
𝜕𝑬

𝜕�⃗⃗�
𝑑𝑉0

𝑉0

= ∫ 𝑺:
𝜕𝑬

𝜕�⃗⃗�𝑉0

𝑑𝑉0, (13) 

in which 𝑬 is the Green-Lagrange strain tensor, 𝑺 is the second Piola-Kirchhoff stress tensor and 𝑢𝑒 is the strain 

energy density function of the constitutive model used. The Green-Lagrange strain tensor is defined by: 

 𝑬 =
1

2
(𝑨𝑡𝑨 − 𝑰), (14) 

where 𝑰 is the identity matrix. The Saint Venant-Kirchhoff constitutive model is adopted. Its strain energy 

density function and the associated second Piola-Kirchhoff stress tensor are defined, respectively, by: 

 𝑢𝑒
𝑆𝑉𝐾 =

1

2
𝑬: 𝕮: 𝑬, (15) 

 𝑺𝑆𝑉𝐾 = 𝕮: 𝑬, (16) 

in which 𝕮 is the constitutive tensor that is the same as the one used in Hooke’s law. 

The potential energy of the external conservative forces and its derivative with respect to current nodal 

positions 𝑌𝑖
ℓ are, respectively: 

 ℙ = −𝐹𝑖
ℓ𝑌𝑖

ℓ − ∫ (𝜙𝑗(𝜉1)𝑄𝑖
𝑗
)(𝜙ℓ(𝜉1)𝑌𝑖

ℓ)𝐽0
𝑚(𝜉1)𝑑𝜉1

1

−1

, (17) 

 
𝜕ℙ

𝜕𝑌𝑖
ℓ

= −𝐹𝑖
ℓ − ∫ (𝜙𝑗(𝜉1)𝑄𝑖

𝑗
)𝜙ℓ(𝜉1)𝐽0

𝑚(𝜉1)𝑑𝜉1,
1

−1

 (18) 

where 𝑄𝑖
𝑗
 is the coordinate 𝑖 of the load per unit of length at node 𝑗. 𝐽0

𝑚 is the Jacobian determinant defined by: 

 𝐽0
𝑚 = √𝑥1,𝜉1

2 + 𝑥2,𝜉1

2 . (19) 
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2.4 Solution of nonlinear equations 

The system of equations obtained from eq. (11) is nonlinear with respect to nodal parameters �⃗⃗�. To solve it, 

the Newton-Raphson iterative method is used, defined by: 

 
𝜕�⃗�(�⃗⃗�)

𝜕�⃗⃗�
|

𝑌𝑡

𝛥𝑌𝑡 = −�⃗�(�⃗⃗�𝑡)     and     �⃗⃗�𝑡+1 = �⃗⃗�𝑡 + 𝛥�⃗⃗�𝑡 , (20) 

where: 

 �⃗�(�⃗⃗�) =
𝜕𝛱(�⃗⃗�)

𝜕�⃗⃗�
     and    

𝜕�⃗�(�⃗⃗�)

𝜕�⃗⃗�
=

𝜕2𝕌

𝜕�⃗⃗�⨂𝜕�⃗⃗�
= ∫ (

𝜕𝑺

𝜕�⃗⃗�
:
𝜕𝑬

𝜕�⃗⃗�
+ 𝑺:

𝜕2𝑬

(𝜕�⃗⃗�⨂𝜕�⃗⃗�)
) 𝑑𝑉0

𝑉0

= 𝑯. (21) 

The initial nodal positions and generalized vectors are used as a first solution attempt for these parameters. 

For the kinematic enhancement �̅� and 𝑍, zero is the first attempt. With respect to integrations, the Gauss-

Legendre quadrature is used. In addition, the chosen stopping criteria for the iterations, given a tolerance 𝑡𝑜𝑙, is: 

 
|𝛥�⃗⃗�|

|�⃗⃗�0|
< 𝑡𝑜𝑙. (22) 

After achieving the current parameters, the second Piola-Kirchhoff stress tensor 𝑺 can be transformed to the 

Cauchy stress tensor 𝝈 by the following relation: 

 𝝈 =
1

𝑑𝑒𝑡 (𝑨)
𝑨 ∙ 𝑺 ∙ 𝑨𝑡 . (23) 

3  Numeric example 

In order to validate the algorithm implemented so far, the first example in Coda et al. [11] was reproduced. 

It is about a clamped beam with a total height of ℎ composed by three layers perfectly attached and subjected to 

a uniform transverse load 𝑞, as shown in Fig. 2. There are two variations of this example with three cases each: 

(1) 𝑞 = 1.0 × 10−3 𝑘𝑁/𝑐𝑚2 and ℎ = 60 𝑐𝑚 and (2) 𝑞 = 1.0 × 10−6 𝑘𝑁/𝑐𝑚2 and ℎ = 6 𝑐𝑚. The three cases 

are the ply arrangements of the laminate, from the lower layer to the upper layer: (a) 𝔼1, 𝔼2, 𝔼1, (b) 𝔼2, 𝔼1, 𝔼2 

and (c) 𝔼2, 𝔼1, 𝔼1, in which 𝔼1 = 100 𝑘𝑁/𝑐𝑚2 and 𝔼2 = 5 𝑘𝑁/𝑐𝑚2. Moreover, zero Poisson was assumed for 

all layers. 

Coda et al. [11] processed the example with seven distinct kinematics, but only two were selected here for 

comparison: TB, which is the Euler-Bernoulli kinematics improved with the shear force contribution and 7PN, 

which has the enhanced kinematic without regularization of the transverse stresses. Similarly, the example was 

processed for this paper with two different kinematics: TZ0, which is the kinematic from eq. (1) and eq. (2) with 

�̅� and 𝑍 parameters restricted and equal to zero, and TZ1, which is the kinematic with �̅� and 𝑍 parameters 

unrestricted. 

The beam was modeled by three finite elements with equally spaced nodes and the iteration tolerance used 

was 10−7. The vertical displacement at the free edge obtained by this work and by Coda et al. [11] can be seen in 

Tab. 1 for all the six cases. 
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Figure 2. Geometrical parameters and boundary conditions. Source: Coda et al. [11]  

Table 1. Vertical displacement at the free edge of the example for each case and kinematic 

Case TZ0 (cm) TZ1 (cm) TB (cm) 7PN (cm) 

1a 0.1249 0.1258 0.1220 0.1262 

1b 1.3225 1.3227 1.3160 1.3228 

1c 0.3301 0.3308 0.2960 0.3303 

2a 0.1153 0.1153 0.1157 0.1153 

2b 1.3045 1.3045 1.3045 1.3045 

2c 0.3204 0.3204 0.2897 0.3203 

 

As one can see in Tab. 1, the displacements obtained by this work are very close to the one with 7PN 

kinematic calculated by Coda et al. [11]. The addition of �̅� and 𝑍 parameters made the structure more flexible. In 

addition, the transverse stress profile at the support is displayed in Fig. 3 for case 1a for both TZ0 and TZ1 

kinematics, where directions 1 and 2 are the longitudinal and transverse directions, respectively. 

 

Figure 3. Vertical stress profile at the support for case 1a for kinematics TZ0 and TZ1 

As can be seen, the shear stress (𝜎12) for kinematic TZ0 is constant for each layer. In contrast, the shear 

stress distribution for kinematic TZ1, although still discontinuous between layers, already displays a quadratic 

behavior and homogeneous conditions on both free surfaces. 
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4  Conclusions 

The formulation implemented so far revealed to be effective for geometrically nonlinear analysis of 

laminated frames. The displacements obtained agree with the ones selected in the literature and the transverse 

shear stress profile not only behaves quadratically but also exhibit homogeneous conditions on both free 

surfaces. The next steps of the research include: the stress regularization, generalization for plates and shells 

applications and plasticity with the zig-zag enhancement profile being updated as the plasticity develops. 
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