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Abstract. The Virtual Element Method (VEM) is a relatively recent method where it is possible to have non-
polynomial functions inside the virtual elements (virtual elements are the equivalent of finite elements for VEM),
while requiring them to behave like polynomials only at the frontier of the virtual elements. The “virtual” term
comes from the fact that the shape functions are computed implicitly using an optimal set of degrees of freedom
leading to a stiffness matrix that heavily depends on the choice of the degrees of freedom.

Geometry parameters like coordinate of vertices, polygonal diameter and area are fundamental quantities
in VEM because they are related to the choice of the degrees of freedom and, consequently, the stiffness matrix
calculation. In this work, a graphical user interface to VEM focused on the two-dimensional case is developed in
order to ease input data and guarantee VEM performance by ensuring the optimal choice of the degrees of freedom.
The interface is responsible to generate the geometry from a set of coordinates, calculate the area, centroid, and
polygonal diameter.

As the main goal of the interface is to make the use o VEM less abstract, a set of requirements were defined
for the graphic tool development. Among them, two are crucial: the interface must be user-friendly, guaranteeing
that user with no prior experience of the method can use it, and data input must be simple. To keep data input
simple, a text file with the coordinates of vertices are used. And to guarantee that the graphic tool is user friendly,
C# programing language is employed in a very intuitive and clear construction.

Throughout the article, the requirements and the interface are shown, explaining the choices made during
the project phase related to programming language and libraries. To exemplify its use, a simple case of a two-
dimensional problem using VEM is done. More specifically, the computation of a local stiffness of a polygon with
more than 4 sides is shown.
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1 Introduction

Virtual Element Method (VEM) is a relatively recent model developed by a group of mathematicians. VEM
has a rigorous mathematical formulation requiring a background that is not usual for engineers. To fully understand
VEM model it is necessary to be familiarized with some results of Functional Analysis, Measure Theory and Partial
Differential Equation Analysis. One of the main goals of this work is to make VEM formulation easier to be
understood by a public not much familiarized with pure mathematics concepts but without loosing the consistence
of the mathematical formulation presented on VEM development. Thus, in the first part of this work, a theoretical
background related to the topics mentioned above is presented. Proofs of theorems (and propositions) will be
suppressed and all formulation will be constructed as intuitive as possible. The second part is dedicated to present
the graphical interface project and construction.

The Virtual Element Method is a generalization of Finite Element Method. The “virtual” term comes from the
fact that shape functions are computed implicitly without any quadrature formula method required, even thought
the shape functions strongly depends on the choice of degrees of freedom. And the choice of degrees of freedom
are related to the construction of the virtual element space (the analogous of finite element space for VEM). In the
virtual element space exists non-polynomial and polynomial functions. The main requirement for non-polynomial
functions is that they behave like polynomials at the frontier elements. To handle with the non-polynomial functions
and to build the stiffness matrix, the projection operator Π∇ is defined.

Basic aspects of the method are presented on da Veiga et al. [1] and da Veiga et al. [2]. In the first paper,
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the theoretical formulation of VEM is described beginning with the Poisson Equation, then the discrete problem
is presented and the authors prove that it is well posed. The virtual element space is constructed, the degrees of
freedom are chosen and finally, the bilinear form and the load vector are constructed. It is important to mention
that the bilinear form with some restrictions will become the stiffness matrix.

The second paper is focused on the practical aspects of VEM. In this sense, the authors give a guideline of
how to compute the stiffness matrix from the projector operator Π∇ and from the degrees of freedom. This matrix
can be computed exactly using only the chosen degrees of freedom. Also, some examples of the application of the
method are given. In the end, the authors introduce a L2−projector related to the construction of mass matrix.

Some implementations of VEM were developed in the past years. In Sutton [3], the method is implemented
using MATLAB. The implementation is restricted to two dimension problems and only considers the case which
order of accuracy is equal to one (order of accuracy will be defined more precisely later in this text). The author uses
a native MATLAB mesh generator. Ortiz-Bernardin et al. [4] an VEM implementation in C++. In this paper, the
algorithm is also restricted to the 2D case but a mesh generator is developed. A performance comparison is made
between VEM and FEM. The authors conclude that for a same amount of degrees of freedoms the computational
cost and the accuracy in results are the same.

Mengolini et al. [5] enumerate some characteristics of the method and make some comparisons with FEM.
According to them, VEM has a good performance with complex geometries because of its pre-processing flexibility
and it is robust against mesh distortions (while FEM is highly dependent on mesh quality). According to the
authors, in FEM mesh elements are triangles or quadrilaterals but in VEM elements can be any convex or non-
convex polygon (a more precise definition of polygons used in VEM will be given later). In 3D case, FEM uses
tetrahedra, hexahedra and pyramids while VEM uses any polyhedra.

In da Veiga et al. [1] and da Veiga et al. [2] the presented formulation is very rigorous and consistent but there
is a lack of practical applications. On the other hand, Sutton [3], Ortiz-Bernardin et al. [4] and Mengolini et al. [5]
are focused on application and some important details of the model are skipped.

As illustrated Virtual Element Method is highly dependent on geometrical characteristics. Therefore, the data
input becomes a very important part for a successful application of the method. The main goal of this work is to
present a pre-processor software to guarantee a robust data input to a VEM solver in order to minimize input errors
and make data visualization simpler.

2 Virtual Element Method (VEM)

On this section, Virtual Element Method mathematical formulation is briefly described. For more detailed
formulation consult da Veiga et al. [1] and da Veiga et al. [2]. First some conditions are given to ensure that the
discrete problem is well posed. Then, the degrees of freedom will be chosen and the virtual element space will be
built. Finally, the projection operator is introduced in order to build the local stiffness matrix and the load vector.

2.1 The Discrete Problem

Let Ω be a polygonal domain. Consider a decomposition τh of Ω in simple polygons K. Simple polygons
are simply connected open sets in which the frontier is formed by line segments intersecting only on the ends. For
each K, take the following definition: h = max

K∈τh
hK . The bilinear form can be written as

a(u, v) =
∑
K∈τh

aK(u, v), (1)

with u, v ∈ H1
0 and where aK(u, v) =

∫
K
∇u · ∇vdx, for each K ∈ τh. For each polygon K were chosen

|v|1,K = aK(v, v)1/2, (2)

for all v ∈ V as the semi-norm and

‖v‖Ω = (
∑
K∈τh

|v|11,K)1/2, (3)
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as the norm. It is important to mention that the norm is originated from the Sobolev Space norm and that space
will be denoted by H1. The polynomial space of dimension k in a space U will be denoted by Pk(U).

The discrete problem is given by: find uh ∈ Vh such that ah(uh, vh) = 〈fh, vh〉, for all vh ∈ Vh where ah is
the discrete bilinear form and fh is a linear functional related to the discrete problem (the linear functional related
to the continuous problem will be denoted as F (v)).

In da Veiga et al. [1] the following hypothesis are taken:
Hypothesis 1 For each h, we have:

1. Vh ⊂ H1
0 (Ω),

2. a symmetric bilinear form ah : Vh × Vh −→ R and a bilinear form aKh : Vh|K × Vh|K −→ R such that

ah(uh, vh) =
∑
K∈τh

aKh (uh, vh), (4)

3. a element fh ∈ V ′h.
Hypothesis 2 There exists an integer k ≥ 1 (order of accuracy) such that, for all K ∈ τh:

1. we have Pk(K) ⊂ Vh|K , where Pk(K) is the polynomial space of dimension k in K and P−1(K) = 0,
2. k-consistency: for all p ∈ Pk(K) and for all vh ∈ Vh|K ,

ah(p, vh) = aK(p, vh), (5)

3. stability: there exists C1, C2 ≥ 0, independently of h and K, such that:

C1a
K(vh, vh) ≤ aKh (vh, vh) ≤ C2a

K(vh, vh), (6)

for all vh ∈ Vh|K .
The theorem that guarantees the uniqueness of the solution and its convergence is the following:
Theorem 1 Under the hypothesis mentioned above, we have:

1. the discrete problem has a unique solution,
2. for all approximation uI ∈ Vh of u and for all approximation of uπ that is piecewise in Pk(K),

‖u− uh‖Ω ≤ C̃(‖u− uh‖Ω + ‖u− uh‖Ω + F̃h), (7)

where C̃(C1, C2) ∈ R and F̃ is the smallest constant such that, for all vh ∈ Vh, F (v)− 〈fh, vh〉 ≤ F̃‖v‖Ω.
The proof of the continuity and the coercivity of the bilinear form ah is done by applying the stability hypothesis
and the Cauchy-Schwarz inequality, then using the Lax-Milgram Theorem and concluding the first part of the
theorem. The second part of the theorem can be prove by defining ξ = u − uI ∈ Vh and then using the linearity
property, the k-consistency hypothesis, the stability hypothesis and the triangular inequality.

2.2 Model of Virtual Element Method

Define for each k ≥ 1, the local virtual element space

VK,k,h = {v ∈ H1(K)| v∂K ∈ Bk(∂K), ∆vK ∈ Pk−2(K)}, (8)

where Bk = {v ∈ C0(∂K)| v|e ∈ Pk(e), ∀e ∈ ∂K} and e is an edge of the polygon K. In other words, the
virtual element space is composed by polynomial and non-polynomial functions. Although it is imposed that the
non-polynomial functions must behave as polynomials in the edge of each element.

The choice of the degrees of freedom will imply that the functions vh ∈ Vh,K,k are well determined. The
chosen degrees of freedom are:

1. VK,k: value of vh on vertices of K,
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2. MK,k: value of vh on the k − 1 midpoint of each edge of K,
3. T K,k: value of the k − 2 internal point (momentum) of K.

By this choice, VK,k ∪MvK,k ∪ T K,k is unisolvent for Vh,K,k,i.e, for each set of degrees of freedom, exists an
unique vh ∈ Vh,K,k defined by this set.

The projector operator Π∇ : Vh,K,k −→ Pk(K) is directed related with the construction of the bilinear form
ah. As some function are non-polynomial, this operator is responsible to project these function on a polynomial
space. Thus, the virtual element space can be written as Vh,K,k = Π∇(Vh,K,k)⊕ (1−Π∇)Vh,K,k.

For the construction of the bilinear form, a naive approach would be take aK,h(u, v) = aK(Π∇u,Π∇v). This
choice for the bilinear form satisfies only the stability and do not satisfy the k-consistency. As result, it is necessary
to introduce a term SK : Vh,K,k × Vh,K,k −→ Pk(K) such that C3 · aK(v, v) ≤ SK(v, v) ≤ C4 · aK(v, v), with
C3, C4 > 0 independent of h and K. Therefore the bilinear form is given by eq. 9:

aK,h(u, v) = aK(Π∇u,Π∇v) + SK(u−Π∇u, v −Π∇v). (9)

Using eq. 9 it is possible to guarantee k-consistency. Taking the canonical basis {ϕi}i∈N of Vh,K,k con-
structed within the Lagrange polynomial,the stiffness matrix is given by eq. 10:

aK,h(ϕi, ϕj) = aK(Π∇ϕi,Π
∇ϕj) + SK(ϕi −Π∇ϕi, ϕj −Π∇ϕj). (10)

It is important to mention that at this point it is possible to write vh =
N∑
i

dofi(v)ϕi and uh =
N∑
i

dofi(u)ϕi,

where N is the number of degrees of freedom and dofi : Vh,K,k −→ R such that dofi(ϕj) = δij is the function
that gives the value of v and u on each degree of freedom.

For the construction of the load vector, define PKk : Vh,K,k −→ Pk the projection operator using the norm of
L2(K) space. Considering the case k = 1, the load vector is given by eq. 11

〈fh, vh〉 =
∑
K∈τh

PK0
1

NV

NV∑
i=1

vh(Vi), (11)

where Vi is the i-th vertex of the polygon K and NV is the vertex number. Now, considering k ≥ 2 and fh =
PKk−2f for each K ∈ τh, the load vector for this case is given by eq. 12.

〈fh, vh〉 =
∑
K∈τh

∫
K

f(PKk−2vh)dK. (12)

3 Graphical Interface for VEM

The software main purpose is to serve as an input and visualization tool for a Virtual Element Method solver.
The graphical interface must be simple to use by users with different skill levels and making the use of Virtual
Element method less abstract.

According to Sommerville [6], functional requirements are definitions of how should the system should
work. Non-functional requirements are related to restrictions of system’s functionalities. Domain requirements are
related to the application domain (e.g. operational system) and reflect the characteristics of the domain. By those
definitions, the requirements for the proposed software can be stated as:
• Function requirements

– allow the user to build a polygonal element,
– allow input by a text file,
– allow the user to build an element by entering the coordinates,
– calculation of centroid, polygonal diameter and area,
– provide to the user the calculated parameters in a text file,
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– provide to the user the local stiffness matrix in text file.
• Non function requirements

– accessible for users with no experience with software of this nature,
– make VEM usage less abstract,
– simplify data input and visualization.

• Domain requirements
– chosen programming language: C#,
– chosen graphics API: OpenGL,
– usage of SharpGL libary to integrate C# and OpenGL.

To facilitate the understanding of the selected programming tools, a brief description of each is given in the
next paragraphs.

The first version of C# was released on 2001 and accordingly to Sharp [7], the language is a powerful language
with a mixture of Java and Visual Basics, also the language uses Microsoft .NET Framework. This framework has
to main components Common Language Runtime (CLR) and Class Library. The C# language presents a pre-
compilation made by Common Intermediate Language (CIL) before the final compilation made by the CLR. This
multi-step compilation processes let C# to have a consistent interaction with other programming languages as result
the C# becomes more versatile.

The C# language supports the use of Windows Presentation Foundation (WPF). The WPF is a very consistent
tool for interface creation allowing the developer to program either in native C# or using XAML (Extensible Markup
Language). Yosifovich [8] defines XAML as a markup language based on XML and it has a great variety of markup
tools for graphical interface building. With this language programming a text box, a button or a canvas is simple
not requiring advanced programming skills. One important feature of XAML is the binding tool which allows the
developer to associate a action on a object considering a action on other object (e.g. associate a variable with the
state of a button).

OpenGL is a graphical API (Application Programming Interface) of high performance, free and open source.
This API is implemented in C++ so it is possible to have direct access to graphical resources from the hardware.
The most recent versions of OpenGL uses a core profile promoting more flexibility for developers once it is possible
to access the graphical functions. Although this profile makes the use of the API difficult for new users. Through
OpenGL it is possible to implement textures and illumination elements to the the graphical objects using the
hardware resources directly. Since there is not a native integration between OpenGL and WPF, a library is needed.
For this project the SharpGL library created was chosen. As result the great majority of OpenGL features can be
used within WPF.

3.1 Calculated parameters

The parameters to be calculated by the software are the area, the centroid, and the polygonal diameter. To
calculate the area, we use the Gaussian Area formula stated in the theorem below:
Theorem 2 Let P be a polygon with n vertices and (xi, yi)i∈N the sequence of vertices coordinates of polygon P.
The area of the polygon is calculated by:

A =
1

2

∣∣∣∣∣
n−1∑
i=1

xiyi + xny1 −
n−1∑
i=1

xi+1yi − x1yn

∣∣∣∣∣ . (13)

The centroid C = (Cx, Cy)can be calculates by:

Cx =
1

6A

n−1∑
i=0

(xi + xi+1)(xiyi+1 − xi+1yi), (14)

Cy =
1

6A

n−1∑
i=0

(yi + yi+1)(xiyi+1 − xi+1yi). (15)
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3.2 Software description

The operation of the software is quite simple, meeting non-functional requirements. The user has the option
to choose whether to read a text file with the polygon entries or to place each coordinate manually. In Fig. 1, the
interface is shown and the input options are highlighted.

Figure 1. Graphical interface for VEM with two input option highlighted

To complement the description of the software, the five side polygon presented in da Veiga et al. [2] will be
used. The format of the input file should be as shown in Fig. 3. It is important to notice the #BEGIN line and the
#END line. The inclusion of these lines is mandatory, since the program uses them as a reference to delimit the
beginning and end of the coordinates in the text file.

Figure 2. Input file of a five side polygon

After entering the text file, the user must press the Finish button and the polygon will be drawn on the side
panel, highlighting the vertices as shown in Fig. 3 . The parameters mentioned in the previous section will be
calculated as soon as the Finish button is pressed and the user has the option to save them in a text file, selecting
this option in the toolbar at the top of the tool. The user can press the Clear button to clear this data entry and
insert a new one. It is also possible to enter each coordinate manually. Just select the option Manual Input. Note
that when this option is selected, it is not possible to enter data via text file. Thus, for each coordinate entered, the
user must press the Input button. At the end, just press the Finish button.

For the five side polygon shown in Fig. 3, the following local stiffness matrix was obtained using the software:
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Figure 3. Five side polygons represented on the OpenGL panel

Klocal =



0, 728331 −0, 20006 −0, 330772 −0, 247439 0, 0499398

−0, 208223 0, 739271 −0, 332438 −0, 126656 −0, 0719538

−0, 34982 −0, 343322 0, 996123 0, 0428919 −0, 345873

−0, 266486 −0, 13754 0, 0428919 0, 871123 −0, 509989

0, 0417766 −0, 0719538 −0, 334989 −0, 499105 0, 864271


. (16)

The geometrical parameters obtained were:
• Area: 10.5,
• Centroid: C = (1.357, 1.809),
• Diameter: 5.

Those values are the same obtained by da Veiga et al. [2].

4 Conclusions

Virtual Element Method is a robust method for complex geometries. The discretization elements should be
any simple polygon and no quadrature methods are needed to compute the shape functions. These functions are
computed implicitly and are highly dependent of the degrees of freedom. The main goal of the work was to develop
a graphical interface to ensure a robust data input for the Virtual Element Method once the method is very sensible
considering the geometrical parameters. To build this tool, C# language alongside the graphical API OpenGL were
used.

The presented software still in development. The next step consists on implement the Linear Elasticity The-
ory alongside VEM. In terms of software, it means that material properties will be implemented. Also, a more
challenging aspect to be implemented is related to the mesh algorithm. For now, the software do not mesh the
geometry. Based on human-computer interaction theory, a greater interaction between the user and the interface
should be applied. As result, in the future the user will be able to draw the geometry by interacting directly with
the OpenGL panel.

Authorship statement. The authors hereby confirm that they are the sole liable persons responsible for the au-
thorship of this work, and that all material that has been herein included as part of the present paper is either the
property (and authorship) of the authors, or has the permission of the owners to be included here.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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