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Abstract. The ability to support large loads over a great span makes trusses structural systems with a variety of
applications in engineering. In regards to dynamic analysis, such structures do have few known analytical solutions
and, thus, are usually analyzed through approximated methods such as the Generalized Finite Element Method
(GFEM). The GFEM is based on the Partition of Unity Method and uses previous knowledge of the problem’s
solution to expand the traditional Finite Element Method (FEM) approximation space. In previous literature an
adaptive GFEM has been proposed for the free vibration problem of bars and trusses and has led to excellent
results. This method consists of an iterative process that incorporates in the enrichment an approximated natural
frequency result in each step. On the other hand, another technique found in literature is the use of the Friberg
error indicator to identify which elements of a mesh have greater impact on the solution in an enrichment process.
The indicator has already been shown to be applicable in GFEM analysis. The selective technique aims to reduce
the number of degrees of freedom necessary in obtaining good approximations of a determined natural frequency.
In this paper a selective adaptive technique is proposed. The Friberg indicator is used to define which bars of the
truss will be enriched and the adaptive process is used to improve the accuracy of the solution. Thus, combining
the advantages of both methods leads to results with low error and reduced number of degrees of freedom when
compared to the traditional GFEM approach. The results obtained by the proposed technique are compared with
reference solutions found in literature.
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1 Introduction

As practical, economical and esthetically pleasing solutions, trusses are commonly used in civil engineering
structures. Trusses are especially economically advantageous in comparison to beams when loads must be sup-
ported over large spans. Thus, they are regularly used in structures such as bridges, roofs and electricity pylons
(Beer and Johnston Jr [1]). Such applications are, in fact, prime examples of structures subject to high dynamic
effects.

These analyses are commonly done through approximated methods such as the Finite Element Method
(FEM). When working with free vibration problems, FEM approximations tend to present high errors in regards
to high frequencies (Arndt et al. [2]). To improve FEM results the approximation space may be enriched with a
pre-determined set of functions. These tend to be mainly polynomial (Houmat [3], Ribeiro [4]) or trigonometric
(Zeng [5, 6]) functions. The advantage of using the latter is that it mimics the behavior of fundamental vibration
modes.

Such technique is the base for the Generalized Finite Element Method (GFEM) (Melenk and Babuska [7],
Babuska et al. [8], Duarte et al. [9], Duarte and Oden [10], Oden et al. [11]). The GFEM, which is based on the
Partition of Unity Method (Melenk and Babuska [7]), improves local and global results by including knowledge
about the problem’s solution into the FEM approximation space. The GFEM has already been applied successfully
to the dynamic analysis of a variety of structures (Arndt et al. [2], Torii and Machado [12], Arndt et al. [13], Debella
et al. [14]).
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The first application of GFEM to the free vibration of trusses was presented by Arndt et al. [2], where the
authors also presented the adaptive GFEM. This expansion of the GFEM is an iterative process that improves the
accuracy of a pre-determined natural frequency. The adaptive GFEM was shown to lead to results with higher
precision when compared to traditional h-FEM with a lower number of degrees of freedom. The advantages of the
adaptive method for trusses was also shown in transient analysis (Debella et al. [14]).

Up to this point, the adaptive GFEM has always been applied considering the enrichment of a problem’s full
mesh. However, recent works have tested selectively applying GFEM enrichment functions to a restricted number
of elements with the use of error indicators (Malacarne et al. [15, 16]), such as the Friberg indicator (Friberg
[17], Friberg et al. [18]). It has been shown that the full mesh does not have to be enriched to obtain low error
results.

Therefore, the objective of this paper is to analyze the free vibration of trusses with the adaptive GFEM
considering selective enrichments guided by the Friberg error indicator. Thus, improving its accuracy with a
reduced number of degrees of freedom.

2 Adaptive GFEM for dynamic analysis of trusses

The Generalized Finite Element Method (GFEM) can be considered an extension of the Finite Element
Method (FEM) in which enrichment functions are used to improve local approximations. The enrichments are
chosen based on local knowledge of the differential equation solution and are incorporated by modifying basic
interpolation functions derived from the Partition of Unity (PU) approach (Melenk and Babuska [7], Babuska et al.
[8], Duarte et al. [9], Duarte and Oden [10], Oden et al. [11]). Thus, in GFEM, the displacement approximation
ueh for a specific finite element is given by:

ueh (ξ) =

2∑
i=1

ηi (ξ)ui +

2∑
i=1

ηi (ξ)


nl∑
j=1

[γij (ξ) aij + ϕij (ξ) bij ]

, (1)

where ηi are PU functions, ξ is the local coordinate system, ui are nodal degrees of freedom, nl is the number of
enrichment levels, γij and ϕij are the enrichment functions, and aij and bij are the field degrees of freedom. In
this work, as in Arndt et al. [2], Torii and Machado [12], Debella et al. [14] and Malacarne et al. [15, 16], the PU
is taken as the linear Lagrangian functions:

η1 = 1− ξ, (2)

η2 = ξ. (3)

As for the enrichment functions, this work utilizes trigonometric functions proposed by Arndt et al. [2] for
bars. These functions consist in a pair of sinusoidal and cosine clouds that in the element domain are written as the
following two pairs of sine and cosine functions:

γ1j = sin (βj Le ξ), (4)

γ2j = sin (βj Le (ξ − 1)), (5)

ϕ1j = cos (βj Le ξ)− 1, (6)

ϕ2j = cos (βj Le (ξ − 1))− 1, (7)

where Le is the element length and the element domain is ξ [0, 1]. Moreover, βj is a hierarchical enrichment
parameter.

The adaptive GFEM (Arndt et al. [2]) is an iterative procedure that aims to increase the accuracy of a deter-
mined natural frequency without modifying the chosen mesh or increasing the levels of enrichment. In the adaptive
GFEM βj is taken as:
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βj =

√
ρ

E
µj , (8)

where ρ is the material specific mass, E is the Young modulus and µj is a frequency related to the jth enrichment
level.

The adaptive GFEM starts by a first approximation for a target frequency (µTARGET) through the FEM with a
coarse mesh. The resulting frequency value is then used as µj in eq. (8) and GFEM with nl = 1 is applied to the
same mesh previously used in the FEM approximation. This process leads to a new frequency value µj , which is
iteratively updated until a pre-defined error limit is achieved. More details on the adaptive GFEM formulation and
procedure are found in Arndt et al. [2] and Debella et al. [14].

Both in standard and adaptive GFEM the mass and stiffness matrices are obtained by standard FEM procedure
(Bathe [19], Hughes [20]). However, when working with trusses, bars may be oriented in any direction in space.
Therefore, a coordinate transformation rule must be applied to obtain the system of final governing equations.
Once the enrichment functions are null at the nodes, this transformation is given by:



u′1

u′2

c′1
...

c′n


=



cos θ sin θ 0 0 0 . . . 0

0 0 cos θ sin θ 0 . . . 0

0 0 0 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1





u1

v1

u2

v2

c1
...

cn


, (9)

where u′i are the nodal displacements in local coordinates, c′i are the enriched (field) degrees of freedom in lo-
cal coordinates, θ is the bar inclination, ui and vi are respectively the horizontal and vertical displacements in
global coordinates and ci are the enriched (field) degrees of freedom in global coordinates. Further details on the
coordinate transformation for truss problems are presented in Rao [21].

3 Friberg Error Indicator

With the intent of achieving optimal convergence rates enrichment procedures may be applied together with
local error indicators. Such combination defines which enrichment based degrees-of-freedom lead to the best
solution improvements (Kelly et al. [22], Gago et al. [23]). In this context, Friberg [17] proposed an error indicator
based on approximating the variation in a specific eigenvalue in a hierarchical enrichment process. Given a problem
of n and n + m degrees of freedom before and after an enrichment procedure, the Friberg indicator for the ith

eigenvalue is given by:

ηi =
1

k
(n)
i

([
K(nm) − λ

(n)
i M(nm)

]
φ
(n)
i

)2
K(mm) − λ

(n)
i M(mm)

, (10)

where kni is the modal stiffness, λni and φni are the ith eigenvalue and eigenvector of an n order approximation and
the different K and M matrices are submatrices of the hierarchically formed stiffness and mass matrices as in:

K(n+m) =

K(nn) K(nm)

K(mn) K(mm)

 . (11)

The Friberg indicator does not depend on the solution of the n + m eigenvalue problem and leads to a
dimensionless number that identifies which elements in a mesh most influence the final solution when a determined
enrichment is applied. Further details on the indicator formulation may be found in Friberg [17] and Friberg et al.
[18].
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The use of the Friberg indicator in GFEM analysis was first evaluated by Malacarne et al. [15, 16]. The
authors demonstrated, in the free vibration analysis of bars and trusses, that the use of the indicator allows GFEM
enrichments to be applied selectively. The proposed adaptive and selective process is described in Fig. 1. Such
procedure leads to approximations with high converge rates and a smaller global system sizes when compared to
standard GFEM.

Chose target vibration mode
target = chosen mode order

Evaluate
Friberg indicators

Chose
enriched elements

Solve by FEM
(GFEM nl = 0)

output = ωTARGET,1

Initial values
of iterative

process i = 1

i = i + 1

GFEM solution (nl = 1)
ωi = ωTARGET,i−1

output = ωTARGET,i

Convergence
Test

End process
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Figure 1. Adaptive and Selective GFEM flowchart.

4 Numerical Results

In order to evaluate the proposed technique, the adaptive and selective GFEM was applied in the seven bar
truss presented in Fig. 2. All bars have Young’s Modulus of 2.1× 1011 N/m2, cross section area of 0.001 m2 and
material density of 8000 kg/m3. The same truss was evaluated in Zeng [5] and Malacarne et al. [16].

1

2

3 5

4

6

72m

2m 2m

1m 1m

Figure 2. Seven bar truss and bar numbering.

In order to compare the proposed technique results, the first five frequencies, obtained by GFEM with all bars
with one enrichment level and β1 = π, the Composite Element Method (Zeng [5]), the h-FEM (according with the
technique described in Debella et al. [14]) and an exact solution (Lahe et al. [24]), are presented in Table 1.

To evaluate the technique efficiency, two frequencies are chose as target (1st and 5th frequencies). The results
and are presented in next subsections.
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Table 1. Frequencies reference results (rad/s).

Mode GFEM 36 d.o.f. Zeng [5] 30 d.o.f. h-FEM 706 d.o.f. Lahe et al. [24]

1 1647.819119 1648.26 1647.814217 1647.784428

2 1740.882082 1741.32 1740.806703 1740.839797

3 3111.534742 3113.83 3111.32946 3111.322715

4 4562.658836 4567.69 4561.894189 4561.817307

5 4823.794071 4829.70 4823.328158 4823.248678

4.1 First Frequency as Target

In this analysis, the first frequency is chosen as the target. Thus, for this frequency the Friberg indicator is
calculated for each element when independently enriched. The results are presented in Table 2 in descending order.

Table 2. Friberg influence factors for the first frequency.

Element Friberg indicator Percentage cumulative sum

3 0.0202 44.8%

5 0.0202 89.7%

1 0.0023 94.8%

7 0.0023 99.9%

4 4.69 × 10-05 ≈ 100.0%

2 1.26 × 10-33 ≈ 100.0%

6 1.26 × 10-33 ≈ 100.0%

Total 0.045047 100.0%

It can be observed that elements 2, 4 and 6 have Friberg indicators with a much smaller order of magnitude
than the other elements, so only elements 1, 3, 5 and 7 are enriched in the adaptive process. These correspond to
almost 100% of Friberg sum. The results of the adaptive and selective procedure are presented in Table 3.

Table 3. Adaptive and selective GFEM for 1st frequency.

Enriched elements 1, 3, 5 and 7

Iteration 1 (8 d.o.f.) 2 (24 d.o.f.) 3 (24 d.o.f.)

1st frequency (rad/s) 1683.521 1647.818 1647.818

The comparison between results shown in Table 1 and Table 3 demonstrates that the adaptive selective process
results in a frequency value lower than that of standard GFEM and the Composite Element Method. Such result is
obtained with only 24 degrees of freedom. This represents 66,6% and 80% of the degrees-of-freedom respectively
required by such methods. Thus, as elements 2, 4 and 6 presented low indicator values when individually enriched
(Table 2), these may be neglected in the enrichment process for adaptive GFEM reducing the total number of
degrees of freedom necessary in the analysis.
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4.2 Fifth Frequency as Target

Next, the fifth frequency is chosen as the target for the indicator calculation and adaptive process. The Friberg
indicator values obtained, for the enrichment of each element, are presented in descending order in Table 4.

Table 4. Friberg influence factors for the fifth frequency.

Element Friberg indicator Percentage cumulative sum

1 0.3149 27.3%

5 0.463 67.5%

7 0.3149 94.9%

3 0.0463 98.9%

4 0.013 ≈ 100.0%

2 6.70 × 10-32 ≈ 100.0%

6 6.70 × 10-32 ≈ 100.0%

Total 1.1521 100.0%

In this case elements 2 and 6 have Friberg indicators with a much smaller order of magnitude than the other
elements, so only elements 1, 3, 4, 5 and 7 are enriched in adaptive process. These correspond to almost 100% of
Friberg sum. The results of the adaptive selective process are presented in Table 5.

Table 5. Adaptive and selective GFEM for 5th frequency.

Enriched elements 1, 3, 4, 5 and 7

Iteration 1 (8 d.o.f.) 2 (28 d.o.f.) 3 (28 d.o.f.)

5th frequency (rad/s) 5678.185 4823.363 4823.270

When Table 5 results are compared with those from Table 1 it is observed that the adaptive selective process
leads to lower frequency values than GFEM and the Composite Element Method. This occurs with a reduced
number of degrees of freedom of 28. This represents 77% and 93% of the degrees-of-freedom respectively required
by the GFEM and Composite Method. Therefore, as elements 2 and 6 present significantly lower influence (Table
4) when compared to other elements, their enrichment is not necessary in the adaptive procedure.

5 Conclusion

In this paper an adaptive and selective GFEM technique was presented. The proposed technique first deter-
mines through the Friberg indicator the influence values of each element’s enrichment in the final result. Subse-
quently, the enrichment is not applied to elements with indicator values with order significantly lower than those
of most mesh elements. Based on such selectively enriched mesh the adaptive procedure is used to approximate
the value of a pre-defined target frequency.

The adaptive and selective GFEM was tested in a seven bars truss. For both target frequencies evaluated
the process leads to accurate results with a reduced number of degrees of freedom. Hence, the technique shows
potential. However, it still needs more studies both to verify its accuracy in other examples and to determine if the
computational cost of the iterative process is compensated by the reduction of the problem size.
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