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Abstract. The Virtual Element Method (VEM) is a generalization of the Finite Element Method (FEM). It 

proposes approximations to fields of interest on elements of almost any shape, by employing a function space 

containing a full polynomial space of arbitrary degree, for its convergence properties, along with additional 

suitable functions. The degrees of freedom of the element are designed such that these additional functions can 

remain unknown while solving the discretized version of the problem. A term containing the projection of the 

approximate solution onto the polynomial functions space guarantees the method’s consistency, while a term with 

projection’s residual has to be approximated to ensure stability. The approximation for the latter term is still an 

open problem for many applications. The objective of this paper is to show a procedure to solve for these virtual 

functions, their projection onto the polynomial space and its residual. This is proposed for the 2D Poisson problem, 

by presenting the functions as solutions, and solving for them via FEM. Then, finding their polynomial projection 

and the residual of the projection. From this, the stabilization term can be approximated up to the error of the FEM 

solution. This procedure may be a clue to visualize the virtual functions behavior and, in future, to help on 

proposing stabilization schemes. 
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1  Introduction 

The virtual element method was first introduced in Beirão da Veiga, et al. [1], and can be described as a 

generalization of the finite element method. One of the method’s main advantages is the decoupling of 

element geometry from the polynomial space of functions used in the element-wise interpolation. The method 

uses a function space designed to include an arbitrary full polynomial space, in order to retain the convergence 

properties from the equivalent finite element. 

This geometric versatility has inspired new strategies for problems in which changes in the mesh are 

useful/required. To mention a couple of examples: an excellent work in brittle material crack-propagation 

exploring VEM’s characteristics was developed in Hussein, et al. [2]; and a new approach to contact modeling 

using the node-to-node formulation via clever use of node insertion was presented in Wriggers, Rust and 

Reddy [3]. 

The method consists of constructing an approximation space defined by a set of properties that encompass 

the full polynomial space, plus other (possibly) non-polynomial functions. Through careful choice of degrees 

of freedom, the appropriate matrices (stiffness matrix, mass matrix, etc.) can be computed without knowledge 

of these additional functions. Due to that the method is qualified as “virtual”, since the full approximation 

space is usually not completely known. 

Advantage comes at a cost. For the computations to be possible, the basis functions for this space must be 

split into their polynomial projection and a residual. The stiffness matrix encompasses two terms, one being 

a product of projections, and the other of residuals. The first term guarantees the methods consistency, and 
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the second its stability. This stability term must be approximated, as the functions are unknown. These 

approximations are currently an open problem. Some works regarding this are: Beirão da Veiga, Lovadina 

and Russo [4] overview of the method’s stabilization; Wriggers, Rust and Reddy [3] with a specific 

stabilization for the proposed contact method, taking into account the presence of smaller colinear edges due 

to node insertion; a stabilization strategy for nonlinear hyperelasticity by introducing a new term in the 

problem’s potential is introduced in Wriggers, et al. [5]; a similar approach in van Huyssteen and Reddy [6]. 

The objective of this paper is to propose a procedure to solve for these virtual functions for the 2D Poisson 

problem, evaluating their polynomial projection and residual using the FEM. As well as computing the 

stabilization term up to FEM’s approximation error. This may be a clue to visualize the virtual functions 

behavior and, in future, to help on proposing stabilization schemes. This was motivated by an earlier work, 

Moherdaui and Gay Neto [7] , applying the method for a problem of this same type, 

In section 2 the virtual element method is presented in the context of the 2D Poisson problem. In section 3 

the methodology is explained. Sections 4 and 5 have the results and conclusions. 

2  Virtual element method 

The virtual element method consists of a procedure to generate a finite dimensional subspace of the space in 

which the weak solution of the problem resides. For the presentation of the method, the 2D Poisson problem 

is chosen to provide context, as it is used in the introductory papers for the method, as well as is used to 

obtain the virtual functions, as will be further explored in section 3.1. 

The 2D Poisson problem is stated in its differential form as finding the function 𝑢 ∈ 𝐶2(Ω) satisfying eq.(1), 

where 𝑢: ℝ2 ⊃ Ω → ℝ, and 𝜕Ω is the boundary of the domain (Ω) over which the problem is defined. 

 {
Δ𝑢 = −𝑓 𝑖𝑛 Ω

𝑢 = 𝑢̅ 𝑖𝑛 𝜕Ω
 (1) 

The same problem can be expressed in the weak formulation as finding the function 𝑢 ∈ 𝐻1(Ω) such that for 

any 𝛿𝑢 ∈ 𝐻0
1(Ω) eq. (2) holds. 

 {
∫ ∇𝑢 ∙ ∇𝛿𝑢

Ω
𝑑Ω = ∫ 𝑓𝛿𝑢

Ω
𝑑Ω

𝑢 = 𝑢̅ 𝑖𝑛 𝜕Ω
 (2) 

From the weak form, the requirement for the solution 𝑢 is that is belongs to the infinite-dimensional Sobolev 

space 𝐻1, i.e. itself and its first derivatives must be square integrable functions. 

2.1 Discretization 

The solution of the problem employing the VEM is attained via approximation of the exact solution in a 

constructed finite-dimensional space 𝑉𝑘
ℎ(Ω), the global virtual function space, where k stands for the degree 

of the full polynomial space included. The discrete problem is stated as in eq. (2), only exchanging the exact 

solution and test function 𝑢, 𝛿𝑢 ∈ 𝐻1 for their restricted counterparts 𝑢ℎ, 𝛿𝑢ℎ ∈ 𝑉𝑘
ℎ ⊂ 𝐻1. 

The global virtual function space is constructed based on a partition of the domain into subdomains Ω𝑒 

corresponding to the virtual elements. The union of the local virtual element spaces 𝑉𝑘
ℎ(Ω𝑒) results in the 

global space. Each local space is comprised of all functions 𝑣ℎ that satisfy the properties stated below: 

 

i. 𝑣ℎ is a polynomial of degree k on each edge 𝑒 of Ω𝑒, i.e. 𝑣ℎ|𝑒 ∈ 𝑃𝑘(𝑒); 

ii. 𝑣ℎ on 𝜕Ω𝑒  is globally continuous, i.e. 𝑣ℎ|Ω𝑒
∈ 𝐶0(Ω𝑒); 

iii. Δ𝑣ℎ is a polynomial of degree 𝑘 − 2 in Ω𝑒, i.e. Δ𝑣ℎ ∈ 𝑃𝑘−2(Ω𝑒). 

 

For simplicity, a virtual element will be treated as a polygon with 𝑛𝑣 vertices and sides. The vertices are 

denoted by 𝑉 and the sides (edges) by 𝑒, as shown in Figure 1. Other important quantities are the subdomain’s 

measure |Ω𝑒|, corresponding to its area, and its diameter ℎ𝑒 consisting of the largest distance between two 

points in the domain. 

Introducing the discretization into the orthogonality condition leads to the linear system characterized by the 

stiffness matrix, the vector of degrees of freedom (DOFs) and the load vector. Each component in the stiffness 
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matrix is computed as shown in eq. (3). The functions denoted by 𝜙 are the canonical basis function for the 

DOFs that are stated later in this section. These functions are, for now, unknown. 

 (𝐾𝑒)𝑖𝑗 = ∫ ∇𝜙𝑖 ∙ ∇𝜙𝑗Ω𝑒
𝑑Ω (3) 

A polynomial projection Π𝑘
∇ ∶ 𝑉𝑘

ℎ(Ω𝑒) → 𝑃𝑘(Ω𝑒) is used to split the stiffness matrix into two terms, by 

applying it to both basis functions in eq. (3), as shown in eq. (4). The first integral corresponds to the 

consistency term (𝐾𝑐
𝑒), and the second term to the stability term (𝐾𝑠

𝑒). In the equation below (𝐼 − Π𝑘
∇) is the 

projector to the residual of the polynomial projection. 

 (𝐾𝑒)𝑖𝑗 = ∫ ∇(Π𝑘
∇𝜙𝑖) ∙ ∇(Π𝑘

∇𝜙𝑗)
Ω𝑒

𝑑Ω + ∫ ∇((I − Π𝑘
∇)𝜙𝑖) ∙ ∇((I − Π𝑘

∇)𝜙𝑗)
Ω𝑒

𝑑Ω (4) 

 

Figure 1. Generic virtual element. 

The polynomial projection is based on the same orthogonality condition and is defined in eq. (5) below. This 

defines the projection up to a constant, there is an additional projector used to circumvent this kernel which 

is presented in Beirão da Veiga, et al. [8]. 

 ∫ ∇𝑝 ∙ ∇((I − Π𝑘
∇)𝑣ℎ)

Ω𝑒
𝑑Ω = 0, ∀ 𝑝 ∈ 𝑃𝑘(Ω𝑒) (5) 

The matrix form of this projector requires the computation of integrals involving virtual functions, of the type 

shown in the left-hand side of eq. (6). On the right-hand side is the form that relates to the degrees of freedom, 

where 𝒏 is the exterior normal on the boundary. We’ll chose a specific basis for the polynomial space called 

the scaled monomials (𝑚𝛼). These are monomials centered on the element centroid and scaled by the inverse 

of the element’s diameter. This is presented more in depth in Beirão da Veiga, et al. [8]. 

 

 ∫ ∇𝑚𝛼 ∙ ∇𝑣ℎΩ𝑒
𝑑Ω = ∫ (∇𝑚𝛼 ∙ 𝒏)𝑣ℎ∂Ω𝑒

𝑑𝜕Ω − ∫ Δ𝑚𝛼𝑣ℎΩ𝑒
𝑑Ω𝑒  (6) 

Finally, the degrees of freedom that univocally characterize a function 𝑣ℎ in the virtual function space are: 

 

• The value of 𝑣ℎ at each of the 𝑛𝑣 vertices; 

• The value of 𝑣ℎ at the 𝑘 − 1 internal points of the (k+1)-point Gauss-Lobatto quadrature on each 

edge; 

• The moments up to order 𝑘 − 2 of 𝑣ℎ in Ω𝑒. 

 

The moments referred to in the last set of DOFs are defined in eq. (7). 

 
1

|Ω𝑒|
∫ 𝑣ℎ𝑚𝛼Ω𝑒

𝑑Ω, 𝛼 = 1, … , dim (Pk−2) (7) 

These degrees of freedom are enough to exactly compute the right-hand side of eq. (6). The boundary integral 

is solved exactly using the Gauss-Lobatto quadrature with the first two sets of DOFs, and the second integral 

corresponds to the third set. This fully accounts for the consistency term in eq. (4). Although the stability 

term’s approximation is an open problem, for this particular problem the approximation presented in eq. (8) 

is sufficient, according to Beirão da Veiga, et al. [1]. The bold quantities refer to their matrix form based on 

the degrees of freedom stated earlier. The requirement for this approximation is that it scales in the same way 
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as the integral being approximated. 

 (Ks
e)ij = ∫ ∇((I − Π𝑘

∇)𝜙𝑖) ∙ ∇((I − Π𝑘
∇)𝜙𝑗)

Ω𝑒
𝑑Ω ≈ (𝐈 − 𝚷𝐤

𝛁)𝛟𝐢 ∙ (𝐈 − 𝚷𝐤
𝛁)𝛟𝐣 (8) 

The number of dimensions of a space 𝑉𝑘
𝑒(Ω𝑒) can be explicitly calculated in terms of 𝑘 and 𝑛𝑣, as shown in 

eq. (9). The dimension of its polynomial subspace 𝑃𝑘(Ω𝑒) is stated, in terms of 𝑘, in eq. (10). And therefore, 

the dimension of their quotient space, the space of the residue, is obtained by taking the difference. 

 dim 𝑉𝑘
𝑒 = 𝑛𝑣 + 𝑛𝑣(𝑘 − 1) + dim 𝑃𝑘−2 = 𝑛𝑣 ∗ 𝑘 +

(𝑘−1)𝑘

2
 (9) 

 dim 𝑃𝑘 =
(𝑘+1)(𝑘+2)

2
 (10) 

For a more thorough and practical introduction to the method refer to Beirão da Veiga, et al. [8]. 

3  Methodology 

This study of the virtual functions is done through the canonical basis functions for the degrees of freedom 

stated in the last section. In section 3.1 these will be shown to be solutions to Poisson problems, to be solved 

using the finite element method. Three different geometrical configurations are used, each with an associated 

mesh, as explained in section 3.2. 

The polynomial approximations are obtained via linear combination of the scaled monomials, with weights 

obtained from the columns of the polynomial projector’s matrix form. These are represented in the same 

mesh, and the residual is a matter of nodewise subtraction of the polynomial approximation from the basis 

function. Once the residuals are stored, the stability term can be computed exactly up to the finite element 

approximation. All visualizations were generated using the software GMSH by Geuzaine and Remacle [9]. 

3.1 Basis functions as Poisson-type problems 

As shown at the beginning of section 2.1, the virtual functions are, by definition, globally continuous on the 

boundary of the element, and a polynomial of degree k on each edge. A unique polynomial of degree k on an 

edge is determined by its value at k+1 points. Therefore, the first and second set of DOFs fully determines 

its trace. These are used as Dirichlet boundary conditions for each basis functions. 

Property (iii) requires the function’s Laplacian to be a (k-2)-polynomial, this fits the definition of a Poisson 

problem shown in eq. (1). The exact polynomial is not known a priori, but the internal degree of freedom can 

be used to find the solution indirectly via linear combination of solutions of similar problems. 

 

Figure 2. Procedure flowchart. 

3.2 Chosen examples 

The chosen examples to illustrate the results of this procedure consist of: 

• Regular polygons (Triangle – T3, Square – S4), as most works using this method employ Voronoi-

type meshes to showcase the method’s geometrical versatility. 

• Degenerate polygon (Quadrilateral – T4), meant as a Triangle with additional node on one side. This 

was chosen as some applications may take advantage of inserting new nodes, as is proposed in 

Wriggers, Rust and Reddy [3]. 
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Although these examples are mostly restricted to usual polygons, the methodology presented to obtain those 

functions seems to be valid for any straight-sided shape, convex or not. 

The geometries (shape and vertices) and meshes used are presented in Figure 3. The dimensions of the virtual 

space 𝑉𝑘
𝑒(Ω𝑒), its polynomial subspace 𝑃𝑘(Ω𝑒) and the residual space 𝑉𝑘

𝑒/𝑃𝑘  are presented in Table 1. 

 

Figure 3. Selected examples: geometry (shape and vertices) and meshes. 

Table 1. Dimensions of the function spaces in terms of polynomial degree and number of vertices. 

  dim 𝑉𝑘
𝑒 dim 𝑉𝑘

𝑒/𝑃𝑘 
dim 𝑃𝑘 

k/nv 3 4 3 4 

1 3 4 0 1 3 

2 7 9 1 3 6 

4  Results 

The results for T3, S4 and T4 are presented in Figure 4, Figure 5, and Figure 6, respectively. Taking advantage 

of symmetry for the regular polygons, the figures present the vertex basis functions for linear virtual element; 

for the quadratic case the basis functions are presented one of each: vertex, edge, and internal DOF. The basis 

function, polynomial projection and residual are presented together. For T4, the basis functions shown are 

those related to the additional node. 

Table 1 shows that the virtual function space and space of linear polynomials coincide for the linear triangular 

element. This is evident in Figure 1 (a). For the quadratic function space, the residue consists of one 

dimension, this is shown as the residue of (c) and (d) are the same except for a scaling factor, and for (b) this 

scaling factor coincides with 0, as the virtual function coincides with the quadratic polynomial. 

 

Figure 4. Basis functions, projection and residue for T3: (a) linear vertex DOF, quadratic (b) vertex, (c) edge, 

and (d) internal DOFs. 

For the square geometry (S4), the linear function space has 1-dimensional residue, this is illustrated in Figure 

5 (a), this residual is a second-order polynomial, and if the square were oriented with aligned with the axis it 

would correspond to the scaled analog to 𝑥𝑦, which is normally added for linear quadrilateral finite elements. 

The quadratic functions induce a 3-dimensional residue space, this can be inferred by the clearly different 

symmetries in the residue functions presented: (b) is symmetric along the diagonal, (c) along the middle line 
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and (d) has two symmetries. 

 

Figure 5. Basis functions, projection and residue for S4: (a) linear vertex DOF, quadratic (b) vertex, (c) edge, and 

(d) internal DOFs. 

For the degenerated quadrilateral geometry (T4), the size of the residue space is the same as for the square, 

however the internal basis function is the same as for the triangle. There are points with slope discontinuity 

due to the nature of the basis functions and the colinear node. 

 

Figure 6. Basis functions, projection and residue for T4: (a) linear vertex DOF, quadratic (b) vertex, (c) edge, 

and (d) internal DOFs. 

Figure 7 shows a comparison between the stiffness matrix stemming from FEM’s approximation of the 

stability term for T3 and its approximation using eq. (8). The colors illustrate similar terms, showcasing the 

requirement that the approximation scales as the exact term does. The blocks of zeros correspond to the DOFs 

where the basis function coincide with a polynomial, leading to no residual. 

 

Figure 7. Stability stiffness matrix for quadratic T3 obtained via (a) FEM and (b) approximation. 

Figure 8 show the same for the square configuration (S4). The same pattern is seen on both sides. 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.54 1.54 1.54 -4.62 0.00 0.00 0.00 1.67 1.67 1.67 -5.00

0.00 0.00 0.00 1.54 1.54 1.54 -4.62 0.00 0.00 0.00 1.67 1.67 1.67 -5.00

0.00 0.00 0.00 1.54 1.54 1.54 -4.62 0.00 0.00 0.00 1.67 1.67 1.67 -5.00

0.00 0.00 0.00 -4.62 -4.62 -4.62 13.86 0.00 0.00 0.00 -5.00 -5.00 -5.00 15.00

(a) (b)
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Figure 8. Stability stiffness matrix for quadratic S4 obtained via (a) FEM and (b) approximation. 

5  Conclusions 

The methodology was successful in obtaining the basis functions, their projection and residual, as well as being 

able to compute the stabilization term up to the FEM error. These same basis functions are used in other elliptic 

problems (e.g. elasticity). Using this procedure inside the actual method would be extremely impractical, however 

it might be useful for studying the exact stability term in the face of more complex problems. Although not shown, 

the presented procedure seems to be applicable for any straight-sided shape and polynomial order. 

Another possible application for this is to inspire better post-processing and visualization tools for the results. 

Although the method’s ingenuity is in not requiring knowledge of these functions, being familiar with them might 

be advantageous to better understand it and its results, such as to inspire the proposal of stabilization schemes. 
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