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Abstract. In order to reduce processing time in complex simulations, several order reduction methods have been
developed. One of these methods is the Proper Generalized Decomposition (PGD). The PGD method is based
on the decomposition of unknown fields in each of the coordinates. PGD is used to solve sequences of one-
dimensional problems of the finite element method. Throughout the iterations, the spatial variables are separated
via the PGD method, resulting in an iterative sequence of global solutions, even in a linear problem. The present
work aims to evaluate the PGD method in heat conduction problems using heterogeneous materials.
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1 Introducion

The focus of this work will be the Proper Generalized Decomposition (PGD) a priori order reduction model,
as presented in the work of Chinesta et al. [1]. This method consists of building a reduced base without prior
knowledge, a priori, of the solution. Basically, a PGD approximation of the solution is constructed by successive
enrichment. This enrichment is done in the form of a finite sum of N functional products, involving the functions
of each coordinate, as shown in the work of Badı́as et al. [2] and Huerta et al. [3].

So, this article describes the formulations developed to obtain approximate solutions to the problem of heat
conduction in heterogeneous materials. As already mentioned, the PGD method will be used, which consists of
obtaining the solution by a sequence of unidimensional problems of the Finite Element Method (MEF), as shown
in the work of Bognet et al. [4] and Chinesta and Ladevèze [5]. PGD is based on separated decomposition of
the unknown field in each of their coordinates, reducing the computational efforts in several orders of magnitude,
as presented by Chinesta and Ladevèze [5] and Ammar [6]. The method involves an iterative sequence of global
solutions even in a linear problem Nouy [7] and Ammar [6]. However, previous experiences in the literature shows
that the number of iterations and modes is small, and the total computational cost involved is generally smaller
than the cost of the single 2D or 3D analysis by finite elements model González et al. [8], Ammar [6] and Chinesta
et al. [9].

The PGD is based on the separation of the unknown field in each of the coordinates. It has been used in
the space-time decomposition of parabolic problems as in the works of Boucinha et al. [10], Nouy [11], reducing
computational efforts by several orders of magnitude. In the work of Boucinha et al. [10], a PGD formulation
is developed for second order hyperbolic differential equations, with an emphasis on transient and tested elasto-
dynamics models for problems with a dimension in space (bar) and time. The PGD solution process can follow
several strategies, because the algebraic system is always non-linear. In this work, we consider only the problem
of heat conduction in steady state.

The text develops formulations for two complementary problems as described in Bognet et al. [4]. First,
we present the formulation for the heat conduction problem in a regular representative volume (RVE), where all
data are represented by their adequate PGD modes. Second, a PGD formulation is developed to obtain a PGD
description of the highly oscillatory material property data, for example thermal conductivity (or elastic modulus,
thermal source, heat flux at a region of the boundary, compression forces). This description is composed by a
sequence of discrete modes uncoupled in each of the three cartesian coordinates, and are used in the first part of
the formulation.

The objective of this work is to evaluate the quality of the approximation response obtained by the PGD
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method in comparison with the MEF, since PGD offers the benefit of saving computational time, which is an
important factor for multidimensional problems.

2 Proper Generalized Decomposition (PGD) for the heat conduction problem

The formulation described here generalizes the ideas explored in Bognet et al. [4] and the formulation is
developed for a 3D domain, but the computational implementation and results are obtained to 2D domain. Let
us initially consider a body, subject to adequate sources and boundary conditions, with the geometric form of a
regular volume Ω with dimensions Ω = Lx×Ly×Lz along the cartesian coordinates x = (x, y, z). The boundary
Γ of the body is composed by the six faces designated as Γ1, Γ2, · · · ,Γ6, where Γ1 and Γ2 have normals in −x
and +x axis, Γ3 and Γ4 have normals in −y and +y axis, Γ5 and Γ6 have normals in −z and +z axis. Here we
consider the strong form for steady state heat flux and homogeneous and istropic material

∇ · (k∇θ) = −b, for x ∈ Ω,
θ(x) = T̄ (x), for x ∈ Γu, (1)
q(x) = (k∇θ) · n = h(x), for x ∈ Γq .

where k is thermal conductivity, b is heat source, T̄ (x) and h(x) are temperature and heat flux prescribed on parts
of the boundary, respectively. We consider a decomposition of the temperature field as

θ(x) = T (x) +G(x), for x ∈ Ω, where
T (x) = 0 for x ∈ Γu, (2)
G(x) = T̄ (x), for x ∈ Γu,

This decomposition of the temperature fields and adequate manipulations generates the following weak form:

given G ∈Kin, find T ∈ V ar,∫
Ω

∇û · (k∇T ) dΩ=

∫
Ω

ûb dΩ+

∫
Γq

ûh dΓ−
∫

Ω

∇û · (k∇G) dΩ, for ∀û ∈ V ar, (3)

where the sets of solution and of variations are equals: Kin = V ar =
{
f ∈ H1(Ω), such that, f(x) = 0 ∀û ∈ V ar

}
.

Consider available the PGD representation of thermal conductivity as k(x) =
∑nk

l=1Dlkxl(x)kyl(y)kzl(z),
and and heat source as b(x) =

∑nb
j=1 Ljbxj(x)byj(y)bzj(z), where nk and nb are PGD modes necessary to

represent thermal conductivity and heat source, respectively. Let us consider that there are already available nu
PGD modes, and we seek the next mode Tnu+1(x). Thus, we have the following representation with variation
separation:

T (x) =

nu∑
m=1

Txm(x)Tym(y)Tzm(z)︸ ︷︷ ︸
T0(x)

+ Tx(x)Ty(y)Tz(z)︸ ︷︷ ︸
Tnu+1(x)

, that is, T (x) = T0(x) + Tnu+1(x). (4)

where T0(x) is known and we seek Tnu+1(x). We proceed to a spacial discretization for Tnu(x):

Tx(x) =

px∑
p=1

Txpφxp(x) = Φx(x)Tx, for x ∈ [0, Lx], ∀ Tx(x) ∈ V arx, (5)

where the space is

V arx =
{
f ∈ H1(Ωx), such that f(x) = 0 for all x ∈ Γx

}
. (6)

Similarly, we have the spacial discretizations and the spaces for directions y and z. The domain and boundary

are: for x Ωx(0, Lx) and Γx {0, Lx}, for y Ωy(0, Ly) and Γy {0, Ly} and for z Ωz(0, Lz) and Γz {0, Lz}. Each
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set of functions φxp(x), φyp(y) and φzp(z) is a set of piecewise continuous finite element basis functions, one-
dimensional, associated with a given mesh in x, y or z directions, and Tx, Ty and Tz , are unknown nodal
coefficients for the nu + 1-th PGD mode of the temperature, in the meshes of x, y, z directions, respectively.
These are the coefficients that generate the virtual mesh, similar to the finite element generated mesh. In the
present formulation, Tx(x) ∈ V arx but not all basis component φxp(x) are required to belong to V arx. Nodes
p span the entire domain Ω̄x. Thus, the condition Tx(x) = 0 on x ∈ Γx is satisfied adjusting the adequate nodal
value in Tx and in its variation T̂x. The same holds for φyp(y) and φzp(z). The temperature gradient is discretized
by

∇T = ∇T0 +∇Tn, i.e.,

∇T = ∇T0 +


(Φx,xTx) (ΦyTy) (ΦzTz)

(ΦxTx) (Φy,yTy) (ΦzTz)

(ΦxTx) (ΦyTy) (Φz,zTz)

 . (7)

The variation of the temperature is T̂ (x) = T̂n(x) = T̂xTyTz + TxT̂yTz + TxTyT̂z ,

Weak forms

Case only T̂x 6= 0, given Ty and Tz . From eq. (4), the approximate temperature and the gradient at the new
mode nu+ 1 is in the form:

T̂ (x) = T̂n(x) = T̂xTyTz = [TyTzΦx]1×Px
T̂x = NxT̂x,

δ∇T =


TyTzΦx,x

Ty,yTzΦx

TyTz,zΦx


3×Px

T̂x = BxT̂x. (8)

where Ty,y = Φy,yTy , Tz,z = Φz,zTz and Px is number of nodes in the direction x. The approximate weak form

becomes

T̂T
x

(∫
Ω

kBT
x BxdΩ

)
Tx = T̂T

x

(∫
Ω

NT
x b dΩ +

∫
Γq

NT
x h dΩ −∫

Ω

kBT
x∇T0dΩ −

∫
Ω

kBT
x∇GdΩ

)
,

(9)

that is, KxTx = Fx, where Kx has dimension Px × Px.

We can use these expression analogously to T̂y 6= 0 and T̂z 6= 0.

2.1 PGD Representation of scalar data

PGD can be used to represent scalar data, like a material scalar property (thermal conductivity component
kij(x), or elastic modulus component Eij(x)) or a load like thermal source b(x), heat flux at a region of the
boundary h(x), etc. This representation is necessary to obtain all integrals in eq. (9) decoupled in x, y and z, that
is, we obtain three independent 1D integrals.

To demonstrate how the PGD representation works, let consider the variation on the domain highly oscillatory
or random, as in an heterogeneous non-periodical material. Consider a PGD representation for k(x):

k̃(x) =

nk∑
l=1

Dlkxl(x)kyl(y)kzl(z)︸ ︷︷ ︸
k0(x)

+ kx(x)ky(y)kz(z)︸ ︷︷ ︸
kn(x)

, that is, k̃(x) = k0(x) + kn(x). (10)

where k0(x) is known and we seek kn(x). In the first step, k0(x) is absent. We define a squared error functional
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as E(kx, ky, kz) =
∫

Ω
[k(x)− (k0 + kxkykz)]

2
dΩ, where k(x) is the given data of the property. The variation

of the error functional for direction x is

δEx(kx, ky, kz) =
∂E

∂kx
δkx = 2

∫
Ω

[
k(x)− k̃

]
δkxkykz dΩ = 0. (11)

We proceed to a spacial discretization for kn(x):

kx(x) =

nx∑
p=1

Qxpφxp(x) = Φx(x)Qx, (12)

where Qx is column vectors of nodal values of the approximation. eq. (11) gives

∫
Ω

[k(x)− k0] kykzδkx dΩ =

∫
Ω

kxk
2
yk

2
zδkx dΩ. (13)

The variation δkx is represented from eq. (12) δkx = Φx(x)Q̂x. Thus, (13) becomes

Q̂T
x

∫
Ω

ΦT
x [k(x)− k0] kykz dΩ︸ ︷︷ ︸

Fx

= Q̂T
x

[∫
x

ΦT
x Φxdx

∫
y

k2
ydy

∫
z

k2
z dz

]
︸ ︷︷ ︸

Kx

Qx, (14)

KxQx = Fx, (15)

where Kx is a symmetric mass-like matrix, which is obtained from three independent 1D integrals. However, at

this point, Fx requires coupled integration in all three dimensions, due to the physical data k(x). Analogously, we
obtain y and z systems: KyQy = Fy and KzQz = Fz . Algebraic system eq. (15) is coupled and non-linear.

The force term in eq. (14) can be decomposed using the PGD separated representation of k0 in eq. (10)

Fx =

∫
Ω

ΦT
x [k(x)− k0] kykz dΩ,

=

∫
Ω

ΦT
x k(x)kykz dΩ−

nk∑
l=1

Dl

(∫
x

ΦT
x kxl dx

)(∫
y

kylkydy

)(∫
z

kzlkz dz

)
, (16)

= Fk
x − F0

x.

Analogously to obtain Fy = Fk
y − F0

y and Fz = Fk
z − F0

z

Therefore, the parts F0
x, F0

y and F0
z can be integrated separately in each direction, and only Fk

x, Fk
y and Fk

z

must be integrated in coupled form because the term k(x).

2.2 Heterogeneous materials (Two phases materials)

Consider the heterogeneous material constituted by two or more materials, where the matrix property is km

and the inclusions of property is ki. Both, matrix and inclusions, are considered isotropic homogeneous. Consider
the property of the inclusion be decomposed as ki = km + ∆k. Thus, Fk

x =
∫

Ω
ΦT

x k(x)kykz dΩ of eq. (16)
becomes Fk

x = km
∫

Ω
ΦT

x kykz dΩ+∆k
∫

Ωi
ΦT

x kykz dΩ, where Ωi is the union of the inclusion domains. km is a
constant in Ω and ∆K is constant in every inclusion. If the inclusion is cubic with faces parallel to the coordinate
axes, both integrals can be uncoupled in the cartesian directions:

Fk
x = km

∫
x

ΦT
x dx

∫
y

ky dy

∫
z

kz dz + ∆k

ni∑
p=1

∫
x∈Ωp

ΦT
x dx

∫
y∈Ωp

kydy

∫
z∈Ωp

kzdz (17)

ni is the number of inclusions and Ωp is the domain of the p-th inclusion. Analogously to obtain Fk
y and Fk

z

All tests for PGD representation were realized considering the integrals uncoupled in the cartesian directions,
that is, all inclusions are cubic with faces parallels to the coordinates axes.
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3 Results

The problems will be dealt with in a 2D domain. To test the methodology, the PGD method was tested
cases with analytical solutions and with two or more phases of material, as showed in Sec. 2.2. In case with
more phases, one of the cases handled uses a 10 × 10 meters domain, where the matrix has a constant thermal
conductivity km = 0.5 W/(moC) and have two others materials, as inclusions, kA = 1.0 W/(moC) and kB = 2.0
W/(moC). The material kA (light blue) occupies 15% of the total area and kB (red) occupies 10%, totalling 25%
of the total area occupied by inclusions, as showed in Fig. 1. The Table 1 shows the Norm L2 of the temperature

Figure 1. Material configuration and arrangement of inclusions.

of the results obtained with the FEM and PGD methods, varying the number of nodes (nned) in each directions
and the number of modes PGD (M ), and also the relative error between the Norm L2 solutions. The Fig. 2 shows
the behaviour of the temperature and heat flux in the directions x along the line y = 3.0 m using 25 modes.

Table 1. Norm L2 of the temperature of the problem varying the number of nodes in each direction (nned), using
2 modes (2M ), 10 modes (10M ) and 25 modes (25M ). The relative error between the solution of FEM and PGD
methods are shown too.

Temperature Norm L2 Relative temperature error (%) - FEM × PGD

nned FEM PGD 2M PGD 10M PGD 25M PGD 2M PGD 10M PGD 25M

11 62.7449 54.9860 55.9549 56.5134 12.3658 10.8215 9.9316

51 63.0756 59.8042 60.4221 61.0978 5.1864 4.2068 3.1355

101 63.1108 58.5556 58.8542 60.1185 7.2178 6.7446 4.7413

201 63.1252 58.6672 58.8776 59.2256 7.0621 6.7289 6.1775

501 63.1319 58.6204 60.0395 60.0618 7.1461 4.8983 4.8631

1001 63.1336 58.6876 59.6380 59.9563 7.0420 5.5368 5.0327

1251 63.1339 58.0307 60.1653 60.3796 8.0830 4.7021 4.3626

It is observed how the relative error between the norms of the results obtained via FEM and PGD decreases as
more modes are added, but the addition of more nodes did not imply a decrease in the relative error. For example,
the relative error using 2 modes and 51 nned is less than the relative error using 2 modes and 1251 nned. This
fact can also be observed using 10 and 25 modes and it happens due to the dependence of the PGD method on the
number of nodes used in each direction, as it directly implies the coefficients used to generate the nodal values of
the virtual mesh.

It can be seen in Fig. 2 how the behaviour of the PGD method with respect to the heat flow in the x direction
shows greater discrepancy when compared to the FEM method. Fig. 3 shows the results obtained with the FEM
and PGD method in the entire domain and the absolute error between the two solutions in the entire domain, where
it becomes more evident that the PGD method approach presents greater errors with respect to heat flow, both in
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Figure 2. Behaviour of the temperature and heat flux in the direction x along the line y = 3.0 m using 25 modes.

the x and y directions. This happens because the temperature is obtained directly by the approached method, while
the heat flow is a derivative of the temperature, thus causing a larger error in the response of numerical method.
The PGD solution is Fig. 3 was generated using 501 nodes in each direction and 25 modes.

In this case, using PGD approximation, we can several times less processing. This means, using 501 nned
and 25 modes, we have (501 + 501)× 25 = 25050 ndof and the traditional FEM we have 5012 = 251001 ndof.

4 Conclusion

The numerical examples covered in this work are simple, of a numerical nature and were approached without
practical interest, as the objective was to analyse the potential of PGD as an alternative method of solving the heat
conduction problem.

Using the PGD approach described in this article, we conclude that this method is capable of representing
the problem addressed efficiently. In addition, using the proposed method, it is possible to save a lot of processing
time compared to the traditional finite element method, as seen in the example discussed. Thermal conductivity
was used as a target, but the same technique can be used for other data necessary to model the heat conduction
problem, such as the heat source, temperature and heat flow prescribed in the contour, etc.

It is important to show the importance of representing the material as presented in Sec. 2.1, as this artifice is
necessary to be able to integrate Eq. 9, for direction x, and analogously to y and z.
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(a) T (oC) - FEM. (b) T (oC) - PGD. (c) Absolute error T .

(d) qx (W/m2) - FEM. (e) qx (W/m2) - PGD. (f) Absolute error - qx.

(g) qy (W/m2) - FEM.
m

(h) qy (W/m2) - PGD. (i) Absolute error - qy .

Figure 3. Solutions using FEM and PGD (501 nned and 25 modes) in 2D visualization and absolute error between
FEM and PGD solutions in all the domain.
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