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Abstract. Isogeometric Analysis (IGA) is a numerical analysis approach that integrates the concepts of CAD
(Computer-Aided Design) and CAE (Computer-Aided Engineering). It uses the same basis functions employed
by CAD systems to describe the model geometry (e.g. Bézier and NURBS surfaces) to approximate the solution
field (e.g. displacement or temperature). Therefore, the geometry of the models is exactly represented for any
level of discretization. The use of well-known geometric modeling algorithms (e.g. knot insertion and degree
elevation) simplifies the model refinement procedure, allowing an easy application of discretization schemes while
preserving the initial geometry. The modeling paradigm adopted in CAD systems uses boundary models that
cannot be directly used by CAE. The use of Bézier elements is a good alternative, as it facilitates the connection
between the geometric model, based on a Boundary Representation (B-Rep), and the isogeometric analysis model.
High-order mesh generation techniques are used to discretize geometric models through rational Bézier elements,
preserving the exact geometry and creating a suitable analysis model. This paper discusses the definition of two-
dimensional triangular Bézier elements and their performance in numerical analysis. The numerical results are
compared with an analytical solution, where the convergence rate of the Bézier elements is assessed in linear
elasticity problem.
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1 Introduction

The Isogeometric Analysis (IGA) is a numerical method introduced by Hughes et al. [1] to integrate CAD
(Computer-Aided Design) and CAE (Computer-Aided Engineering). The main feature of the IGA is that the
geometry of the structure is exactly represented, as the same basis functions employed by CAD systems to describe
the model geometry (e.g. Bézier and NURBS surfaces) are used to approximate the solution fields. Thus, well-
known geometric modeling algorithms (e.g. knot insertion and degree elevation) can be used to refine the analysis
model [2].

The CAD systems usually adopt the Boundary Representation (B-Rep) paradigm, where the model geometry
is represented by a collection of bounding surfaces and cannot be used directly by FEM based CAE systems.
This occurs because of these representations do not provide an explicit parameterization of the domain to be
analyzed [3]. A large body of work was developed in order to solve this problem using different basis functions
like B-Splines [4], NURBS [5], T-Splines [6]. However, they had difficulties in automatically generating suitable
isogemetric meshes for complex geometries.

The use of Bézier elements is a good alternative to overcome such issues, as it facilitates the connection
between CAD and CAE. These elements allow the use of high-order mesh generation techniques to discretize
domain of the problem, preserving the exact geometry of the model and yielding suitable analysis models. Thus,
the Bézier elements in IGA has been receiving considerable attention [3, 7–10].

This paper discusses the definition of two-dimensional triangular Bézier elements, implemented by Barroso
et al. [8, 10], and their performance in numerical analysis. The mesh generation is carried out using the academic
program Plane Mesh Generator (PMGen), which features a graphical user interface for 2D mesh generation for
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finite element and isogeometric analysis [11]. The numerical results are compared with an analytical solution,
where the convergence rate of the Bézier element is assessed in linear elasticity problem.

This paper is organized as follows. Section 2 review some concepts of Bézier elements. Section 3 describes
the formulation of IGA used in this work. Section 4 presents the numerical example. The conclusions of this work
are presented in Section 5.

2 Geometry Modeling

In this section, we show important concepts related to geometric modeling using Bézier and NURBS elements
such as rational Bézier curves, NURBS curves, rational Bézier triangles, and Nurbs surfaces.

2.1 Rational Bézier Curves

A rational Bézier curve of degree p is defined by the linear combination:

C(ξ) =

p∑
i=0

Ri,p(ξ) pi, Ri,p(ξ) =
Bi,p(ξ) wi∑p

î=0
Bî,p(ξ) wî

, (1)

where ξ is the parametric coordinate, pi is a set of control points, Ri,p are a rational bases, wi is the weight
associated with the control point pi and Bi,p are the Bernstein polynomials, defined as:

Bi,p(ξ) =
p!

i! (p− i)!
(1− ξ)p−i ξi, i = 0, 1, ..., p, (2)

Bernstein polynomials have important properties like: linear independence, non-negativity, partition of unity, and
symmetry [12].

2.2 NURBS Curves

NURBS (Non-Uniform Rational B-splines) curves of degree p are defined by the linear combination:

C(ξ) =

n∑
i=1

Ri,p(ξ) pi, Ri,p(ξ) =
Ni,p(ξ) wi∑n
î=1Nî,p(ξ) wî

, (3)

where n is the number of bases and Ni,p are the B-Spline base functions, which require a knot vector, a set of non-
negative and non-decreasing parametric values, Ξ = [ξ1, ξ2, ξ3, ..., ξm+p+1]. Given the knot vector, the B-spline
basis functions are defined via the Cox–de Boor recursion formula as [12]:

Ni,0(ξ) =

{
1, ξi ≤ ξ ≤ ξi+1

0, otherwise,
(4)

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (5)

B-spline basis functions present important properties, including linear independence, non-negativity, partition of
unity, and compact support.

2.3 Rational Bézier Triangles

Rational Bézier triangles are bivariate surfaces defined by a set of control points, arranged in a triangular
structure. It is worth mentioning that the edges of the Bézier triangles are Bézier curves. These triangular surfaces
are defined by [3]:

T (λ) =
∑

i+j+k=p

Rp
ijk(λ) pijk, Rp

ijk(λ) =
Bp

ijk(λ) wi∑
i+j+k=pB

p
ijk(λ) wi

, (6)
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where p is the degree, λ = (λ1, λ2, λ3) are barycentric coordinates, pijk are the control points, Rp
ijk are the

bivariate rational bases, and Bp
ijk are the bivariate Bernstein polynomials defined as:

Bp
ijk(λ) =

p!

i!j!k!
λi1 λ

j
2 λ

k
3 , λ1 + λ2 + λ3 = 1, 0 ≤ λi ≤ 1 (i = 1, 2, 3), (7)

where i + j + k = p and i, j, k ≥ 0. Fig. 1 illustrates a cubic Bézier triangle and its parametric space with the
triple index scheme. It is worth pointing out that the bivariate Bernstein polynomials have similar properties as the
univariate case discussed in the Section 2.1, as linear independence, non-negativity, partition of unity.

(a) Physical space. (b) Parametric space. (c) Index space.

Figure 1. Cubic Bézier triangle.

2.4 NURBS Surfaces

NURBS Surfaces are defined from tensor product of two univariate NURBS basis functions. Thus, a NURBS
surface S of degrees p and q, in directions ξ and η, respectively, is defined by a linear combination of bivariate
NURBS basis functions R̂ij(ξ, η) and a matrix of control points P (n × m):

S(ξ, η) =

n∑
i=1

m∑
j=1

R̂(ξ, η)ij Pij , R̂(ξ, η) =
wij Bi,p(ξ) Bj,q(η)

W (ξ, η)
, (8)

where W (ξ, η) is the bivariate weight function:

W (ξ, η) =

p∑
î=0

q∑
ĵ=0

wîĵ Bî,p(ξ) Bĵ,q(η). (9)

It is important to note that the bivariate NURBS basis have similar properties defined for the univariate
NURBS, as linear independence, non-negativity, partition of unity, and compact support.

2.5 Boundary Representation

The B-Rep is a geometric modeling paradigm usually adopted in CAD systems. It consists in representing
models by its boundary entities, which correspond to a set of bounding surfaces in 3D models and bounding
curves in plane models. There are many algorithms available for the manipulation and modification of B-Rep
models, which make this approach extremely interesting in the geometric modeling field. Furthermore, the explicit
definition of the model’s boundary enables an easy application of rendering techniques through modern graphics
API, such as OpenGL and DirectX.

Despite these advantages, B-Rep does not to provide directly an analysis model required by finite element
or isogeometric solvers. There is a surface-to-volume parametrization problem to be solved to obtain a valid
numerical model. This issue has been tackled through the application of mesh generation techniques [13].

In the context of IGA, this problem remains an active field of research. There are many approaches in
the literature aiming to solve the surface-to-volume parametrization problem, using multiple NURBS patches, T-
Splines, and other representations, but these solutions lack in robustness. On the other hand, the use of rational
Bézier elements allows the automatic generation of analysis-suitable meshes.

In the case of plane models described by NURBS curves, the unstructured rational Bézier triangle mesh
generation algorithm is described as follows [11]:
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



Isogeometric analysis using Bézier elements

• Initially, rational Bézier segments are extracted from NURBS curves, through Bézier extraction procedure;
• A linear mesh generator is processed, using the chords of Bézier segment as input edges;
• The Degree Elevation algorithm is applied to linear mesh elements, and the input boundary curves are

restored, preserving geometry exactness;
• Lastly, post-processing smoothing can be applied to improve mesh quality.

For instance, we consider a simple plate with hole model illustrated in Figure 2. Since NURBS can not
represent holes due to its tensor product nature, the model should be manually broken into multiple patches. Once
the eight NURBS patches are found, the refinement procedure can be applied. On the other hand, a mesh composed
of rational Bézier triangles can be obtained directly using the procedure described previously.

(a) B-Rep Model. (b) Multiple NURBS patches. (c) Bézier Triangle Mesh.

Figure 2. 2D model and its parametrizations using NURBS patches and rational Bézier triangles.

3 Isogeometric Analysis

Isogeometric analysis uses the same idea as the MEF isoparametric formulation, but the approximation se-
quence is reversed. Therefore, the displacement field is approximated using the same basis functions used by the
CAD systems for geometric modeling. This feature allows the geometry of the structure to be exactly represented,
independent of the discretization level adopted in the numerical analysis.

In this work, from the geometric modeling concepts discussed in the Section 2, a two-dimensional structure
is described by:

x =

np∑
i=1

Ri xi, y =

np∑
i=1

Ri yi, (10)

where np is the number of control points, Ri are the basis functions, and xi, yi are are the coordinates of the
control points.

The displacements within the structure are approximate with the same basis functions used to describe the
geometry of the solid:

u =

np∑
i=1

Ri ui, v =

np∑
i=1

Ri vi, (11)

where Ri are the rational Bézier triangle bases presented in Eq. (6), ui and vi are the displacements of the control
points. These equations can be written in matrix format as:

û =

uv
 =

np∑
i=1

Ri 0

0 Ri

uivi
 =

np∑
i=1

Ni ui = N u, (12)

where u is the vector of degrees of freedom and N is the approximation matrix given by:

N =
[
N1 N2 ... Nnp

]
. (13)
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Considering that the displacements are small, the strains are calculated as:

ε =


εx

εy

γxy

 =


u,x

v,y

u,y + v,x

 =

np∑
i=1


Ri,x 0 0

0 Ri,y 0

Ri,y Ri,x 0


uivi

 = B u. (14)

where the strain-displacement matrix (B) has the same format of the approximation matrix (N), defined in Eq.
(13). Furthermore, in linear elasticity the stresses (σ) are computed using the Hooke’s law:

σ = C ε. (15)

Using the Principle of Virtual Work, the equilibrium equations of the model can be written as:

δWint = δWext ⇒
∫
V

δεTσ dV =

∫
V

δûT b dV +

∫
S

δûT q dS, (16)

where b is the body load, q is the surface load, V is the volume, S is boundary of the structure, and δε is the virtual
strain, given by:

δε = B δu, (17)

Substituting Eq. (12) and Eq. (17) in Eq. (16), the equilibrium equations of the model can be written as:

δuTg = δuT f , (18)

where f is the external forces vector and g is the internal force vector, given by:

f =

∫
V

NT b dV +

∫
S

NT q dS, (19)

g =

∫
V

BTσ dV =

∫
V

BTC ε dV =

∫
V

BTC B dV u = K u, (20)

where K is the stiffness matrix, given by:

K =

∫
V

BTC B dV. (21)

Finally, replacing the relationship g = K u in Eq. (18) and like virtual displacements (δu) are arbitrary, the
equilibrium equation can be written as:

Ku = f . (22)

Note that the element stiffness matrix (Ke) and force vector (fe) are evaluated through numerical integration on
each element domain. The triangular quadrature presented in [14] is adopted here. The global equilibrium system
shown in the Eq. (22) is obtained using the same techniques used in FEM.

The presented isogeometric formulation was implemented in the structural analysis software FAST [15],
developed in C ++ programming language and using the object-oriented programming (OOP) paradigm.

4 Numerical Example

This example deals with a infinite plate with circular hole under constant in-plane stress in the x-direction.
The infinite plate is modeled as a finite plate as shown in Fig. 3. The material propriety adopted is E = 105 and
Poison’s ratio is ν = 0.3. The analytical solution to this problem can be found in Hughes et al. [1]:
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Figure 3. Elastic plate with a circular hole: problem definition

The meshes were generated using PMGen program, and uniformly refined [3]. The numerical problem is
solved using FAST. Figure 4 shows the meshes under several levels of refinement.

(a) h = 1.0 (b) h = 0.5 (c) h = 0.25

Figure 4. Meshes used at refinement-h (p = 2)

Figure 5(a) shows the results obtained for the stress concentration of σxx at the point A, in the Fig. 3. The
values shown are the ratio between the numerical value obtained and the value of the analytical solution. All
results converged to the exact solution of the problem with the discretization of the model. Convergence results in
L2-norm of stresses are show in Fig. 5(b). As expected, the convergence rates for quadratic, cubic, quartic, quintic
and sextic Bézier elements are approximately 2, 3, 4, 5 and 6, respectively.
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(b) Error measured in the L2-norm of stress vs. mesh size

Figure 5. Numerical results
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



Francisco D. P. Silva, Elias S. Barroso, Evandro Parente Jr.

5 Conclusions

This work presented the formulation of two-dimensional rational Bézier triangles for isogeometric analysis
of 2D linear elasticity problems and studied its performance. Overall, the results found are excellent and show a
good agreement between analysis with these elements and the analytical solution. The convergence rates presented
the values corresponding to the theoretical rates for different element degrees. It is important to note that the use of
rational Bézier triangles with the unstructured isogeometric mesh generator allows the analysis of complex models
through automatic mesh generation geometrically exact without user interaction in which the model does not need
to be subdivided into multiple patches.
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de Bézier. In Proceedings of the XXXVII Iberian Latin American Congress on Computational Methods in Engi-
neering.
[9] Engvall, L. & Evans, J. A., 2017. Isogeometric unstructured tetrahedral and mixed-element bernstein–bézier
discretizations. Computer Methods in Applied Mechanics and Engineering, vol. 319, pp. 83–123.
[10] Barroso, E. S., Cavalcante Neto, J. B., Vidal, C. A., & Parente Jr, E., 2017. Geração de malhas isogeometricas
utilizando mapeamento transfinito. In Proceedings of the XXXVIII Iberian Latin American Congress on Compu-
tational Methods in Engineering. ABMEC Brazilian Association of Computational Methods in Engineering.
[11] Barroso, E. S., Evans, J. A., Cavalcante Neto, J. B., Vidal, C. A., & Parente Jr, E., 2019. An algorithm for
automatic discretization of isogeometric plane models. In Proceedings of the XL Iberian Latin American Congress
on Computational Methods in Engineering.
[12] Piegl, L. A. & Tiller, W., 1997. The Nurbs Book (Monographs in Visual Communication). Springer.
[13] Frey, P. & George, P., 2008. Mesh Generation: Application to Finite Elements: Second Edition. John Wiley
& Sons, Inc.
[14] Dunavant, D. A., 1985. High degree efficient symmetrical gaussian quadrature rules for the triangle. Inter-
national Journal for Numerical Methods in Engineering, vol. 21, n. 6, pp. 1129–1148.
[15] Barroso, E. S., 2015. Análise e otimização de estruturas laminadas utilizando a formulação isogeométrica.
2015. 161 f. Mestrado em engenharia civil, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia
Civil: Estruturas e Construção Civil, Universidade Federal do Ceará, Fortaleza.
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