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Abstract. The Generalized Finite Element Method (GFEM) proposes the expansion of FEM’s approximation
space by combining Partition of Unity (PU) functions with enrichment functions. Such combination provides lo-
cally better capacity to approximate the desired solution. PU functions combine local approximations, forming
the corresponding global approximation. The Galerkin method is employed, leading to a system of equations to
be solved for global nodal parameters. However, it is important that the extended approximation space is linearly
independent, as to not jeopardize GFEM’s system’s conditioning which could lead to inaccurate results. Recent
developments propose alternatives for preserving the solving system’s linear independence, improving its condi-
tioning. This work offers new contributions in two manners. On one hand, a new set of PU functions to compose
the enriched space is explored. On the other hand, the Singular Value Decomposition (SVD) methodology is ex-
plored to obtain adequate solutions even in the presence of linear dependencies. Examples that normally lead to
dependencies are explored, emphasizing the advantages of the strategies. It is shown that GFEM’s system’s condi-
tioning is close to FEM’s while employing the new PU. Also, SVD’s efficiency for solving the system disregarding
its dependencies is demonstrated, adding robustness to the most conventional versions of the method.

Keywords: Generalized Finite Element Method, Higher Order Polynomial PU, Singular Value Decomposition,
Scaled Condition Number.

1 Introduction

The Generalized Finite Element Method (GFEM) has shown potential in a borad set of applications, such
as fluid-structure interaction, crack and shear band simulations, as seen in Belytschko et al. [1]. A GFEM ma-
jor advantage lies in its excellent convergence properties, achieved through the approximation’s space expansion,
combining special enrichment functions with PU sets to locally mimic solution’s expected behavior while main-
taining conformity in the global approximation. However, the unrestricted expansion of the approximation space
may lead to ill conditioned solving systems, as observed in many works, such as Strouboulis et al. [2] and Gupta
et al. [3].

Many studies were developed addressing this issue, e.g. Zhang et al. [4], Zhang et al. [5], Babuška and
Banerjee [6] and Cui and Zhang [7], with different solutions and applications. In this paper, we offer contributions
in two different aspects. First, we explore the use of a high order polynomial PU in the construction of the enriched
space as a way to improve system’s conditioning. On the other hand, we examine a different way to solve GFEM’s
linear systems even when they are ill conditioned.

2 Model Problem Formulation

Let Ω̄ = Ω ∪ ∂Ω ∈ R2 be a domain of linear elastic behavior. The governing equations of the Boundary
Value Problem (BVP), namely equilibrium, constitutive and compatibility, are respectively given by:

∇ · σ = 0, σ = C : ε, ε = ∇su in Ω (1)
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where σ, C and ε represent the Cauchy’s stress, Hooke’s and small strain tensors, respectively, while u is the
vector-valued displacement field.

Neumann and Dirichlet boundary conditions are then imposed on ∂Ω as follows:

σ · n = t̄ on ∂Ωσ, u = ū on ∂Ωu (2)

where n is the outward normal versor to ∂Ω, t̄ and ū denote prescribed traction and displacement, respectively.
Also, ∂Ω = ∂Ωσ ∪ ∂Ωu and ∂Ωσ ∩ ∂Ωu = ∅. Once crack is present, crack surfaces are assumed free of traction.

Through the weak formulation and Galerkin’s method, a finite dimensional approximation uh of u can be
found by solving the following problem:

Find uh ∈ S(Ω) ⊂ E(Ω) such that ∀vh ∈ S(Ω)

B(uh,vh) = F (vh), with

B(uh,vh) =

∫
Ω

σ(uh) : ε(vh) dA, F (vh) =

∫
∂Ω

t̄ · vh ds
(3)

The above mentioned S(Ω) is the trial/test functions space that provides a discretization of the energy space
E(Ω) with energy norm‖·‖E(Ω) =

√
B(·, ·). Equation 3 leads to a linear system of equations which can be solved

for the parameters appearing in the approximate solution, also known as degrees of freedom (DOFs). It is observed
that the approximation space S(Ω) is hereby constructed through the GFEM/SGFEM.

3 On GFEM/SGFEM Shape Functions and the Partitions of Unity Involved

The GFEM is a Galerkin Method that proposes the expansion of the conventional FEM approximation space,
SFEM , through special functions called enrichment functions. This expansion allows to take advantage of a-priori
knowledge about the problem’s solution by exploring special functions that better mimmic locally its behavior. To
build the GFEM’s approximation, uh

GFEM , these special functions are multiplied by conventional FEM shape
functions, Lagrangian linear or bilinear, which are Partitions of Unity (PU).

Let
{

(xi, yi) : i ∈ Ih
}

be the set of nodes in the finite element mesh adopted in the discretization, where h
is indicative of the elements’size and Ih is the set of nodal indexes. Moreover, φi is the PU hat-function attached
to node i with support cloud ωi (set of elements sharing this node). Also, let Lij denote the j-th component,
1 ≤ j ≤ ni, of the enrichment functions’ vector Li on node i, with Li1 = 1. The GFEM’s global approximation
function is then given by:

uh =
∑
i∈Ih

ni∑
j=1

φiL
i
jb
i
j =

∑
i∈Ih

φiai +
∑
i∈Ih

ni∑
j=2

φiL
i
jb
i
j = uh

FEM + uh
ENR (4)

where bij ∈ R2 represents the discretization’s parameters, or DOFs, ai = bi1 and uh
FEM ,uh

ENR are FEM’s
approximation and the enriched part of GFEM’s approximation, respectively.

Despite its excellent convergence properties, GFEM’s conditioning is generally worse than the FEM one. Ad-
dressing this issue, Babuška and Banerjee [6] proposed a stable GFEM (SGFEM) based on a simple modification
of the enrichment functions, consisting on subtracting its linear interpolant as follows:

L̄ij = Lij − Iωi
Lij , Iωi

Lij(x, y) =
∑
k∈Ih

φk(x, y)Lij(xk, yk) (5)

where Iωi
Lij(x, y) is the finite element interpolant of Lij(x, y).

It is shown and exemplified in Babuška and Banerjee [6] that this modification improves the conditioning and
also does not require any special treatments for blending elements.

Nevertheless, it was shown in Zhang et al. [4] with polynomial enrichments that it does not fully prevent
linear dependencies. The solution proposed then was employing a different PU, for instance the flat-top PU, to
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build the enrichment space. Sato et al. [8] extended the flat-top PU formulation to two-dimensional domains
with quadrilateral elements, achieving good system conditioning even with polynomial enrichments. Next, Ramos
et al. [9], in the context of a SGFEM for elasticity crack problems, presented good conditioning and convergence
results through enrichment spaces built partly with the use of non hat-function PUs, namely flat-top PU and a
trigonometric PU. Recently, in Cui and Zhang [7], a higher order polynomial PU was employed in a similar
context to Ramos et al. [9]. Following Cui and Zhang [7], in this paper, we explore the high order PU along with
polynomial enrichments seeking forconvergence improvement, as well as for stability control.

The higher order polynomial PU is a set of Hermite interpolation polynomials which, for a one-dimensional
master element [0, 1] and its generalization to a two-dimensional quadrilateral master element [0, 1]× [0, 1] through
a tensorial product, respectively, is given by:

Q1
0 = (1− ξ)2(1 + 2ξ), Q1

1 = ξ2(3− 2ξ)

Q1
mn(ξ, η) = Q1

m(ξ)Q1
n(η), m, n = 0, 1

(6)

4 Singular Value Decomposition

Despite the presence of linear dependencies in the system of equations, as the BVP is well posed, the solution
is unique, i.e., the resulting approximate solution should always be the same if the system is properly solved,
without sensible influence of roundoff errors. Different strategies have been suggested for solving ill conditioned
GFEM’s systems such as the iterative algorithm presented in Strouboulis et al. [2] and the multifrontal sparse
Gaussian elimination in Duff and Reid [10].

We hereby present another strategy for solving such systems, based on the relation between Singular Value
Decomposition (SVD) of the stiffness matrix K and its Moore–Penrose inverse. First, we set a minimum value
for computed singular values, λ, used in the solution. Then, compute r singular values greater than λ and their
related right and left singular vectors. Eckart-Young theorem states that the best r-ranked approximation to K is
given through SVD by:

K ≈ UnDOF×rΣr×r(V
T )r×nDOF = AnDOF×nDOF (7)

nDOF is the total number of discretization’s DOFs, the columns of UnDOF×r and VnDOF×r are the left and
right singular vectors, respectively, Σr×r is a diagonal matrix with the r singular values and AnDOF×nDOF is
the approximate matrix. Also, UnDOF×r = VnDOF×r because K is symmetric, so only one of them needs to be
computed.

The approximate matrix’s Moore–Penrose inverse is then computed as follows:

A+
nDOF×nDOF = VnDOF×rΣ

+
r×r(U

T )r×nDOF (8)

where Σ+
r×r is formed, in this case, by replacing every diagonal entry of Σr×r by its reciprocal. Finally, the

approximate solution is found pre-multiplying the independent vector by A+
nDOF×nDOF . In this paper, we set

λ = 10−12, an extremely low value, so only non null singular values, taking the machine epsilon into account, are
computed and the original system’s solution is recovered.

5 Numerical Examples

The results herein presented were obtained from the problem shown in Fig. 1a. It consists of a two-dimensional
edge crack square panel, with a crack line ΓC and a crack tip C . The Neumann boundary conditions applied cor-
respond to the first term of the pure Mode I solution’s asymptotic expansion in the neighborhood of a crack, Szabó
and Babuška [11] for reference. The crack surface is traction-free. Dirichlet boundary conditions were applied to
prevent rigid body motion, as the load is self-balanced, so the stiffness matrix is not singular unless linear depen-
dencies appear in the enriched approximation space S(Ω). Plane strain condition was assumed. Young Modulus
E = 1.0 and Poisson’s ratio ν = 0.3 were adopted.
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Figure 1. (a) Edge crack panel and (b) enrichment strategy. Nodes marked with “�” are enriched by singular
functions, “X” nodes by linear Heaviside functions and “◦” nodes by polynomial functions.

Figure 1b shows an example of a typical mesh used in the simulations and enrichment distributed at the nodes.
Quadrilateral elements with h = 1

2(i+1)+1
, i = 1, 2, ..., 6 were employed in structured grids.

The singular enrichment functions present in the discretization are given by:

LS,x̄(r, θ) =
√
r

{(
κ− 1

2

)
cos

θ

2
− 1

2
cos

3θ

2
,

(
κ+

3

2

)
sin

θ

2
+

1

2
sin

3θ

2

}

LS,ȳ(r, θ) =
√
r

{(
κ+

1

2

)
sin

θ

2
− 1

2
sin

3θ

2
,

(
κ− 3

2

)
cos

θ

2
+

1

2
cos

3θ

2

} (9)

where (r, θ) is the polar coordinate system defined on the crack’s tip C and κ = (3− 4ν). LS,x̄ and LS,ȳ are used
to expand the approximation space along the local directions x̄ and ȳ, respectively, resulting in four additional
DOFs per node. These enrichment functions are capable of representing the solution’s singular behavior near C
and are discontinuous in ΓC . They were derived from the Modes I and II elasticity crack solutions and first used in
Oden and Duarte [12] and Duarte et al. [13]. Coordinate system transformations are used in their implementation.

Linear Heaviside functions set is defined as follows:

LLH(x, y) =

{
H,H

x− xi
h

,H
y − yi
h

}
, H(x, y) =

 1, Z(x, y) ≥ 0

−1, Z(x, y) < 0
(10)

where Z(x, y) = 0 is the crack line equation. This set of functions is used to represent displacement discontinuity
along ΓC .

The enrichment strategy herein adopted for the singular and linear Heaviside functions follows Gupta et al.
[3] and Zhang et al. [5] while delivering optimal convergence order O(h) and stiffness matrix conditioning close
to FEM’s when applied to both GFEM and SGFEM. The geometric enrichment strategy is employed for singular
functions, therefore nodes in a ball B(C,R) with R = 0.25 around the crack tip are enriched. Elements crossed
by the crack line have its nodes that are not in B(C,R) enriched with the Linear Heaviside set. The singular and
Linear Heaviside nodes set, IS and ILH respectively, are given by:

IS =
{
i ∈ Ih : (xi, yi) ∈ B(C,R)

}
and ILH =

{
i ∈ Ih : (xi, yi) ∈ es and es ∩ ΓC 6= ∅

}
\IS ; (11)
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where es is the set of elements intercepted by the crack ΓC .
Aiming at higher order convergence, we expand the approximation space with the following shifted polyno-

mial functions, applied to every node i of the discretization:

Lp=2
i (x, y) =

{
(x− xi)
hi

,
(y − yi)
hi

,
(x− xi)2

h2
i

,
(x− xi) (y − yi)

h2
i

,
(y − yi)2

h2
i

}
(12)

We observe that the modification suggested in Babuška and Banerjee [6] is not adopted for the subset Lp=1
i as the

functions would be nullified.
Convergence analysis presented in this paper are based on the relative error in the energy norm, defined as:

εh =
‖u− uh‖E(Ω)

‖u‖E(Ω)

(13)

where u is the known exact solution of the problem.
Moreover, system’s conditioning analysis were controlled using the scaled condition number (SCN) K (K)

as indicator, given by:

K (K) := κ2(K̂) = κ2( ˆDKD), Dii = K
−1/2
ii (14)

whereD is a diagonal matrix and κ2(A) is the condition number ofA.

5.1 Higher order polynomial PU

In order to control the tendence to loss of stability induced by polynomial enrichment, the following ap-
proximation, here referred as SGFEMHOP , is built particularly multiplying polynomial enrichment functions by
Hermitian polynomial PU:

uh =
∑
i∈Ih

φiai +
∑
i∈ILH

3∑
j=1

φi

(
LLHj − Iωi

LLHj

)
bij +

∑
i∈IS

2∑
j=1

φi

(
LSj − Iωi

LSj

)
cij+

∑
i∈Ih

2∑
j=1

Q1
i (Lp=1

i )jd
i
j +

∑
i∈Ih

3∑
j=1

Q1
i

(
(Lp=2

i \Lp=1
i )j − Iωi

(Lp=2
i \Lp=1

i )j

)
eij

(15)

It is noted that the approximation is vector-valued and different singular functions are used in each direction,
according to eq. (9).

Figure 2 shows a comparison of results obtained with different methods described in this paper. It is noted
that the conditioning’s increase rate isO(h−2) in the SGFEMHOP , same order as the one provided by FEM, while
GFEM and SGFEM yield singular systems. This can be explained as linear dependencies between the FEM’s
approximation space and the polynomial functions enrichments are eliminated through the use of a different PU.
Such behavior is coherent with what has been shown in Zhang et al. [4], Sato et al. [8] and Ramos et al. [9].
Despite the conditioning improvement, error convergence order obtained using SGFEMHOP was initially subpar
in comparison to SGFEM and GFEM. The reason for such behavior was detected later to be error concentrations
observed in the corner elements of the mesh. So a new modification was proposed, using FEM’s hat-functions
as PU for polynomial functions enrichments on corner nodes, SGFEMMD

HOP . With this modification, as shown in
Fig. 1 a quadratic convergence order O(h2) was recoverd along with conditioning growth O(h−2).

5.2 Singular Value Decomposition

In this section we present results regarding the methodology described in Section §4. Figure 3a compares
the relative error in the energy norm obtained from different solution methods. The iterative procedure described
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Figure 2. Higher order polynomial PU results: (a) Relative error in the energy norm convergence and (b) Scaled
condition number growth.

in Strouboulis et al. [2] was adopted in the SGFEM curve, while SGFEMSV D’s curve comes from the afore-
mentioned methodology. Both methods yield practically equivalent solutions. It is observed from Fig. 3b that the
solving system is singular, hence really high SCN, taking into account the machine epsilon. Nonetheless, SVD
was able to deliver good results.
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Figure 3. SVD results: (a) Relative error in the energy norm convergence and (b) Scaled condition number growth.

Finally, Table 1 addresses quite interesting results related to the matrix’s rank, which is equal to the number of
singular values and vectors computed for the solution, along with its nullity. It’s observed that the nullity relatively
decreases with mesh refinement. Similar behavior was also noted in Strouboulis et al. [2].
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Table 1. Null singular values behavior

i Number of DOFs Rank Rank % Nullity %

1 472 398 84% 16%

2 1300 1176 90% 10%

3 4156 3932 95% 5%

4 14812 14388 97% 3%

6 Conclusions

Through the investigations presented in this paper, it is shown that the employment of the higher order poly-
nomial PU in combination with polynomial enrichment functions enables for higher order convergence while
maintaining good system conditioning. Also, the SVD methodology was explored for solving the singular or al-
most singular systems herein studied, providing accurate solutions despite existence of dependences. However,
high computational cost can be involved with mesh refinement. In a future research, investments on computational
efficiency improvement are going to be done aiming to better explore SVD advantages.
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