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Abstract. The main purpose of this paper is to analyze the applicability of the Smoothed Particle Hydrodynamics 

(SPH) method in water hammer modeling, a transient pipe flow problem. A reservoir-pipe-valve system with 

steady friction losses was chosen to implement the method. In order to suppress the limitations of the method due 

to boundary conditions and numerical instability, numerical corrections were applied to the SPH. The applied  

corrections are found in the kernel function (CSPH) and in the use of artificial viscosity. Furthermore, the method 

is validated by comparing the numerical results obtained with SPH and the numerical solution obtained by the 

Method of Characteristics (MOC). 
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1  Introduction 

Associated with water hammer, a transient condition in which rapid disturbances occur in the pipe flow (such 

as pump trip off, control valve adjustments, and accidental events) changes in pressure and velocity occur inside 

the pipe. According to Wichowski [1], it is important to consider the transient condition during the operation, 

maintenance, and design of water distribution systems. Due to its complexity, computational models are regularly 

used to overcome the transient problem. 

Smoothed Particle Hydrodynamics (SPH) is a particulate, Lagrangian, and meshless numerical method 

commonly used in simulations of complex problems. Since the discretization of the problem domain is particulate, 

the SPH is used to estimate the value of a specific property of a particle that uses the same properties of neighboring 

particles. To this end, interpolation of the kernel function is taken into account. Still, the particulate method 

transforms partial differential equations into ordinary differential equations, facilitating a simulation and analysis 

of the transient pipe flow. Therefore, this paper aims to apply the SPH method to the water hammer problem. The 

case study is based on the transient flow in a reservoir-pipe-valve system with steady friction losses on the pipe 

walls, which can be treated as a one-dimensional problem. The application of the SPH method is validated by 

comparison with the numerical solution obtained by the well-known Method of Characteristics (MOC). 

2  Water Hammer 

The water hammer is a phenomenon that occurs during the transient pipe flow due to the rapid closure of a 

valve, power failure of pump stations, or any other form of abrupt flow interruption. When the phenomenon occurs, 

pressure peaks are formed inside the pipe that can exceed the maximum pressure allowed by the pipe material, 

which can lead to failure or rupture. The equations that govern the problem are described in the section 2.1. 
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2.1 Classical water hammer equations  

According to Chaudhry [2] and Wylie and Streeter [3], the transient pipe flow problem is governed by a pair 

of partial non-linear differential equations, which represent the laws of momentum conservation - eq. (1) – and of 

mass conservation - eq. (2) - with 𝑑𝑥 𝑑𝑡⁄ = 𝑐 ± 𝑉. 
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+ 𝑉
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= 0,                                                                 (1) 

𝜕𝑉

𝜕𝑡
+ 𝑉

𝜕𝑉

𝜕𝑥
+

1

𝜌

𝜕𝑃

𝜕𝑥
+

𝑓𝑉|𝑉|

2𝐷
= 0,                                                            (2) 

in which 𝑃 is the internal pipe pressure, 𝜌 is the fluid density, 𝑐 is the the pressure wave speed, 𝑉 is the flow 

average velocity, 𝑓 is the friction factor, 𝑥 is the pipe length axis and 𝑡 is time. 

Equations. (1) and (2) are written in their Eulerian forms, according to their convective terms. To obtain these 

same equations without the convective terms (Lagrangean form), it needs to use the total derivatives of 𝑃 and 𝑉. 

Thus, the rewritten EDPs are showed in eq. (3) and (4): 
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.                                                                     (4) 

Also, as the numerical value of 𝑐 is such 𝑉 ≪ 𝑐, the ratio 𝑑𝑥 𝑑𝑡⁄ = 𝑐 can be assumed. 

2.2 Valve closure 

For a valve with discharge to the atmosphere, the volumetric flow (𝑄) and internal pressure (𝑃) in it are 

related by the orifice equation, according to eq. (5): 

𝑄 = (𝐶𝑑𝐴)√2𝑃/𝜌,                                                                        (5) 

in which 𝐶𝑑 is the discharge coefficient, 𝐴 is the effective flow area, 𝑃 the hydraulic pressure in the valve and ρ 

the density of the fluid. 

According to Soares [4], the volumetric flow in a generic time (𝑄𝑇) and in the initial condition (𝑄𝑜) can be 

related by eq. (6): 

𝑄𝑇 = (𝑄𝑜𝜏)√
𝑃𝑇

𝑃𝑜
,                                                                         (6) 

in which 𝜏 is the opening valve coefficient, written in eq. (7). 

𝜏 =
𝐶𝑑𝑃𝐴𝑃

𝐶𝑑𝑜𝐴𝑜
.                                                                             (7) 

2.3 Constant-level reservoir 

For a large reservoir, the water column can be considered constant. Thus, the pressure at the reservoir outlet 

is considered as the pressure of the water column. 

3  Smoothed Particle Method 

In this topic, the SPH equations are presented and applied to the transient pipe flow. As the water hammer 

problem can be addressed as one-dimensional (1D) problem, the equations and corrections are written in 1D. 

3.1 Classical SPH equations 

The SPH function can be described accordingly to eq. (8). 

𝑓(𝑥𝑖) = ∫ 𝑓(𝒙𝒋)𝛿(𝒙𝒊 − 𝒙𝒋)𝑑𝒙𝒋𝛺
≈ ∫ 𝑓(𝒙𝒋)𝑊(𝒙𝒊 − 𝒙𝒋, ℎ)𝑑𝒙𝒋𝛺

,                                 (8) 
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𝛿(𝒙𝒊 − 𝒙𝒋) = {
1,     𝑖𝑓   𝒙𝒊 = 𝒙𝒋

0,     𝑖𝑓   𝒙𝒊 ≠ 𝒙𝒋
,                                                              (9) 

in which 𝒙 is the position vector, 𝛿 is the Dirac Delta function, Ω is the compact domain, 𝑊 is the kernel function 

(a approximation function for the Dirac Delta) and ℎ is the smoothing length. 

The chosen kernel function 𝑊, besides being an even function, must also satisfy the following conditions: 

  I) Normalization condition: ∫ 𝑊(𝒙𝒊 − 𝒙𝒋, ℎ)𝑑𝒙𝒋 = 1
Ω

; 

 II) Delta function condition: lim
ℎ→0

𝑊(𝒙𝒊 − 𝒙𝒋, ℎ) = 𝛿(𝒙𝒊 − 𝒙𝒋); 

III) Compact condition: 𝑊(𝒙𝒊 − 𝒙𝒋, ℎ) = 0 when |𝒙𝒊 − 𝒙𝒋| > 𝑘ℎ; 
in which 𝑘 is a constant related to the smoothing length ℎ and defines the kernel effective (not null) region, with 

the effective region also called compact domain. 

Monaghan [5] recommends the use of the Gaussian function for better SPH physical representation, as it is 

sufficiently smooth, stable, and precise. However, as the function never actually reaches zero, its use would create 

very long domain support, requiring greater computational effort. This way, the cubic spline function - eq. (10) - 

was proposed to represent the kernel function, with a compact support domain [6].  

𝑊(𝑟, ℎ) = 𝛼𝑑 {
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4
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4
(2 − 𝑟)3,                          

 0,                                           

   
0 ≤ 𝑟 < 1
1 ≤ 𝑟 < 2

𝑟 ≥ 2
 ,                                           (10)  

so that 𝑟 is equal to |𝒙𝒊 − 𝒙𝒋| ℎ⁄  and 𝛼𝑑 is 2 (3ℎ)⁄  for the 1D case. 

3.2 Artificial viscosity 

During the SPH simulations, it is common to appear oscillations in the results, since the water hammer 

governing pair of equations are hyperbolic PDEs. Thus, a term to suppress the numerical oscillations presented 

needs to be used. In this study, an explicit dissipative term is added to the momentum equation, which is called 

artificial viscosity [7]. Thus, eq. (4) will take the form presented in eq. (11):  

𝐷𝑉

𝐷𝑡
= −

1

𝜌

𝜕𝑃

𝜕𝑥
−

𝑓𝑉|𝑉|
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𝜕(𝜌𝛱)

𝜕𝑥
.                                                            (11) 

According to Monaghan & Gingold [7], artificial viscosity can be given by eq. (12): 

(
𝜕(𝜌𝛱)

𝜕𝑥
)

𝑖
= ∑ 𝑚𝑗𝛱𝑖𝑗

𝑁
𝑗=1

𝑑𝑊𝒊𝒋

𝑑𝒙
,                                                               (12)  

𝛱𝑖𝑗 = {

𝛽𝜇𝑖𝑗
2 −𝛼𝑐𝜇𝑖𝑗

𝜌
,    (𝑉𝑖 − 𝑉𝑗)(𝑥𝑖 − 𝑥𝑗) < 0

0,                    (𝑉𝑖 − 𝑉𝑗)(𝑥𝑖 − 𝑥𝑗) ≥ 0
,                                                    (13) 

𝜇𝑖𝑗 =
ℎ̅𝑖𝑗(𝑉𝑖−𝑉𝑗)(𝑥𝑖−𝑥𝑗)

(𝑥𝑖−𝑥𝑗)
2

+𝜂ℎ̅𝑖𝑗
2

,                                                                    (14) 

in which ℎ̅𝑖𝑗 = (ℎ𝑖 + ℎ𝑗) 2⁄  is the average smoothing length of the particles 𝑖 and 𝑗, 𝑚 is the mass, 𝑐 is the wave 

speed, the terms 𝛼 and 𝛽 are constants to be adjusted for the problem, and 𝜂 = 0.01 are used to avoid division by 

zero in eq. (14). 

3.3 Kernel correction 

The kernel function correction presented, also known as Corrective Smoothed Particle Hydrodynamics 

(CSPH), is a generalization of the classic SPH [9]. This method was proposed by Chen et. al. [10], by using Taylor 

series expansion in the kernel function and then applying the particle approximation of the water hammer 

equations. The CSPH method solves the lack of particles in the contour regions - problem illustrated in Fig. 1.b -, 

due to the effective region extension defined by 𝑘ℎ, where there are no particles. Numerical results obtained by 

Chen et. al. [10] demonstrate that, in addition to solving the lack of particles in the contour regions, CSPH improves 

the solution precision not only in these regions but also within the general domain. 
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So, when expanding in the Taylor series a function 𝑓(𝑥) applied to the SPH and disregarding the derivative 

terms of equal to or greater than order 2, eq. (15) is obtained. Since the particles are volumetric and have mass, the 

particle 𝑗 differential volume 𝑑𝑥 can be rewritten as 𝑚𝑗 𝜌𝑗⁄ . 

𝑓(𝑥𝑖) ≅
∫ 𝑓(𝒙)𝑊𝑖(𝒙)𝑑𝒙𝛺

∫ 𝑊𝑖(𝒙)𝑑𝒙𝛺

.                                                                   (15) 

Similarly, the first-order derived function 
𝑑𝑓(𝑥)

𝑑𝑥
 can be approximated by eq. (16): 

𝑑𝑓(𝑥𝑖)

𝑑𝑥
≅

∫ [𝑓(𝒙)−𝑓(𝒙𝒊)]
𝑑𝑊𝑖(𝒙)

𝑑𝒙
𝑑𝒙𝛺

∫ [𝒙−𝒙𝒊]
𝑑𝑊𝑖(𝒙)

𝑑𝒙
𝑑𝒙𝛺

,                                                             (16) 

in which 𝑊𝒊(𝒙) = 𝑊(𝒙 − 𝒙𝒊, ℎ). 

Equations (15) e (16) are corrections applied to classical SPH and are the base equations of CSPH. 

3.4 Particle approach 

For the transient pipe flow, Fig. 1.a illustrates the particle distribution through the pipe with the kernel 

function settled in the analysis particle. The region defined by the influence radius (𝑘ℎ) is taken as the support 

domain Ω. In this way, 𝑁 will be the number of particles within that domain. 

 (a)       (b) 

Figure 1. Kernel function and particle arrangement inside the pipeline (a) and close to the valve (b). 

In this way, eq. (15) and (16), when discretized for the presented conditions, can be rewritten according to 

eq. (17) and (18): 

𝑓𝑖 ≅
∑ 𝑓𝑗𝑊𝑖𝑗 𝑚𝑗 𝜌𝑗⁄𝑁

𝑗=1

∑ 𝑊𝑖𝑗 𝑚𝑗 𝜌𝑗⁄𝑁
𝑗=1

,                                                                      (17) 

(
𝑑𝑓

𝑑𝒙
)

𝑖
≅

∑ [𝑓𝑗−𝑓𝑖]
𝑑𝑊𝑖,𝑗

𝑑𝒙
 𝑚𝑗 𝜌𝑗⁄𝑁

𝑗=1

∑ [𝑥𝑗−𝑥𝑖]
𝑑𝑊𝑖,𝑗

𝑑𝒙
 𝑚𝑗 𝜌𝑗⁄𝑁

𝑗=1

.                                                             (18) 

Thus, the pair of equations that govern the transient problem and all the corrections presented can be rewritten 

as eq. (19) and (20): 

(
𝐷𝑃

𝐷𝑡
)

𝑖
≅ −𝜌𝑐2 (

𝜕𝑉

𝜕𝒙
)

𝑖
,                                                                  (19) 

(
𝐷𝑉

𝐷𝑡
)

𝑖
≅ −

1

𝜌
(

𝜕𝑃

𝜕𝒙
)

𝑖
−

𝑓𝑉𝑖|𝑉𝑖|

2𝐷
− (

𝜕(𝜌𝛱)

𝜕𝑥
)

𝑖
,                                                   (20) 

in which the expression Δ𝑥 Δ𝑡⁄ = 𝑐 is valid, Δ𝑥 is the spacing between fluid particles in the pipe and Δt is the time 

step. 
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3.5 Time integration 

SPH solves the water hammer spatial evolution by turning the PDEs equations into temporal ODEs. Thus, 

the temporal evolution was performed using the first-order Euler integration method, given by eq. (21): 

𝑓𝑡+𝛥𝑡 = 𝑓𝑡 + 𝛥𝑡
𝐷𝑓

𝐷𝑡
.                                                                    (21) 

4  Computational Simulations 

Computational simulations were performed according to the data presented in this topic to obtain the time 

evolution of pressure and velocity of a given particle. 

4.1 Fixed input data 

For the simulations, a large reservoir with pressure at the base 𝑃𝑅 = 1 × 106 Pa connected to a pipe of 𝐿 =

20 m in length, diameter 𝐷 = 800 mm and friction factor 𝑓 = 0.02 were considered. The volumetric flow is 𝑄 =

0.5 m³/s of a fluid of 𝜌 = 1 × 103 kg/m³ under 𝑔 = 9.81 m/s², and the wave velocity adopted for the problem was 

𝑐 = 1025 m/s, based on physical conditions. 

Regarding the SPH, ∆𝑥 = 0.1 m, ℎ = 1 ∆𝑥 and 𝑘 = 1.0 were adopted. It is also considered that in the gradual 

valve closure the valve starts to be closed in 𝑡 = 0 and its closure occurs linearly, that is, τ varies linearly from 1 

(fully open) to 0 (fully closed). 

4.2 Particle distribution 

Particles were distributed so that the first particle coincided with the reservoir outlet and the last one with the 

valve, with these two being the boundary conditions applied according to sections 2.2 and 2.3. The other particles 

were distributed evenly spaced along the pipe, with its total amount equal to 201 particles to guarantee the 

established ∆𝑥. 

5  Results and Discussions 

To verify the applicability of SPH to the problem of the hydraulic transient, the artificial viscosity effects and 

the gradual and rapid valve closure were chosen for analysis, performed for a maximum time of 0.3 s. The outlet 

reservoir velocity (particle 1) and the valve pressure (particle 201) were analyzed. In this sense, the valve closure 

analysis uses the values of 𝛼 = 0.6 and 𝛽 = 0, simulating the instantaneously and gradually (closure occurs in 

0.05 s) valve closure situations. For the artificial viscosity analysis, the instantaneous closure condition was fixed 

and situations were simulated in which 𝛼 = 0.6 and 𝛽 = 0.0 and 𝛼 = 𝛽 = 0.0 (neglecting artificial viscosity). 

5.1 Gradual valve closure 

The pressure in particle 201 and the velocity in particle 1 results are shown in Fig. 2. The running times 

considering instantaneous valve closure were 513.8 s (SPH) and 82.5 s (MOC); for gradual closure, 558.7 s (SPH) 

and 85.3 s (MOC). 

From observing Fig. 2, the obtained results of both pressure (a) and velocity (b) from SPH are very close to 

the analytical solution obtained by MOC. As time grows, there is a numerical effect of dispersion, seen in through 

the smoothing of the rectangular pressure and velocity curves ends. Hou et. al. [11] also observed the same effect 

on their results, with this numerical dispersion being an effect intrinsic to the use of artificial viscosity. 

It is also observed that the small extrapolation of the 2 MPa value in the first pressure rise does not constitute 

a physical result, being a numerical effect from the SPH method, and was corrected in [11]. 
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Figure 2. Time evolution of pressure in particle 201 (a) and flow velocity in particle 1 (b) for the gradual and 

rapid valve closure analysis. 

5.2 Artificial viscosity 

The pressure in particle 201 and the velocity in particle 1 results are shown in Fig. 3. The running times with 

artificial viscosity were 513.8 s (SPH) and 82.5 s (MOC), while for simulation without artificial viscosity they 

were 559.6 s (SPH) and 84.3 s (MOC). 

 

Figure 3. Time evolution of pressure in particle 201 (a) and flow velocity in particle 1 (b) through the artificial 

viscosity effect analysis. 

From what can be seen in Fig. 3 (a) and Fig. 3 (b), when neglecting the artificial viscosity condition (𝛼 =

𝛽 = 0.0), numerical oscillations appear due to the physical result discontinuity, since the drop in pressure from 2 

MPa to 0 happens almost instantaneously. 

The literature brings some advisable values for 𝛼 and 𝛽. However, the simulated values used in this paper 

show good results, which are very close to the numerical solution of MOC. 



J. Fernandes Jr, J. R. G. Vasco, A. K. Soares 

CILAMCE 2020 

Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC 

Foz do Iguaçu/PR, Brazil, November 16-19, 2020 

 

6  Pseudocode 

The computational steps for the water hammer solution are as follow: 

         Step 1     set 𝑝 = 1 

         Step 2     while (𝑝 ≤ 𝑁𝑡) do Steps 3 – 9 

                         Step 3     set valve boundary conditions 

                         Step 4     For (𝑖 = 1, 2, . . . , 𝑁𝑥) do Steps 5 – 7 

                                         Step 5     solve eq. (18) setting 𝑓 = 𝑉 

                                         Step 6     calculate (
𝐷𝑃

𝐷𝒕
)

𝑖
 with eq. (19) 

                                         Step 7     solve eq. (21) setting 𝑓 = 𝑃 

                         Step 8     set reservoir boundary conditions 

                         Step 9     For (𝑖 = 1, 2, . . . , 𝑁𝑥) do Steps 10 – 12 

                                         Step 10     solve eq. (18) setting 𝑓 = 𝑃 

                                         Step 11     calculate (
𝐷𝑉

𝐷𝒕
)

𝑖
 with eq. (20) 

                                         Step 12     solve eq. (21) setting 𝑓 = 𝑉 

         Step 13     Output (vector 𝑃 and 𝑉) 

 

Since 𝑁𝑡 and 𝑁𝑥 are, respectively, the number of time steps taken and the number of particles defined within 

the pipeline and, on Step 11, the previous time step velocities are used to calculate the friction contribution. 

7  Conclusion 

The SPH method can be considered a good method for transient pipe flow computational simulation. Despite 

its limitations, such as the necessary corrections to be inserted, the SPH presents satisfactory results when 

compared with the MOC ones. However, when analyzing the SPH simulation effort with the MOC, it is observed 

that the mesh method has advantage, with the time required for SPH simulation being almost 6.5 times greater 

than the time required for MOC simulation. 
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