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Abstract. In this paper, we conduct a preliminary study of some numerical integration strategies employed in the 

modeling of weak discontinuity interfaces inside the context of XFEM, such that used as enrichment to model 

interfaces bi-materials. The first integration strategy considered is the standard Gauss quadrature method. The 

second uses sub-elements conformed to the discontinuity, which are generated by the Delaunay triangularization. 

In this case, the Gauss points are applied to the triangular sub-elements and transformed into the quadrilateral 

element domain. The third technique replaces the discontinuity by an equivalent polynomial that eliminates the 

use of sub-elements applying directly the standard Gaussian quadrature. A numerical example is carried out in 

order to draw the very first impressions of the integration strategies. 
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1  Introduction 

The extended finite element method (XFEM) is a partition of unity (PU) based method that allows local 

extrinsic enrichment of approximation spaces to capture the discontinuities effects caused by interfaces avoiding 

conforming interface-body meshes and massive adaptive mesh refinement. The standard Gauss quadrature 

commonly used to numerical integrate the weak form in the finite element method (FEM) works very well for 

smooth integrands. The same is not true for non-smooth integrands, as the peaks, jumps, and singularities found 

in the XFEM, severally decreasing the precision of the results Fries and Belytschko [1]. The numerical integration 

is an important subject of study inside the XFEM, as well as the GFEM.  
In Moës, Dolbow, and Belytschko [2], the work recognized to coin the XFEM methodology, but without 

using the term XFEM, it is called the attention to the necessity of using different strategies to deal with the lack of 

precision of the standard Gauss quadrature, and it is proposed an integration using sub-elements. The use of sub-

elements has proved to be a very efficient technique for the integration of the weak forms in XFEM, especially for 

static interfaces in linear analysis, having as an advantage not adding degrees of freedom associated with sub-

elements.  

Fries and Belytschko (2010) proposes an integration procedure with a decomposition of the element into sub-

elements aligned with the discontinuity, similar to what is the standard in FEM. According to Natarajan, 

Mahapatra, and Bordas [3] and Seabra et al. [4], this decomposition of the elements is the conventional one in 

XFEM, but these authors use this type of integration only to compare their results which are obtained using 

different strategies. This type of integration is used by Kästner et al. [5] and also by Béchet et al. [6] so that the 
integrated functions are continuous in each sub-element. Ventura [7] states that this is a common technique, but 

seeks for a method so that it is not needed. 

Ventura [7] employs the standard Gauss quadrature in the discontinuous elements without decompose the 

element or introducing any approximation. The technique used is based on the analysis of the element stiffness.  

Based on the nodal value of the level set, it is shown that there is an equivalent polynomial, whose integration 

provides exactly the value of the integrated function in the sub-element. Such a polynomial is defined in the 

element domain, so it can be integrated by the standard Gaussian square. 
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In the present work, the standard Gauss quadrature, the integration with triangular sub-elements, and 

integration with equivalent polynomials were used in a simple example with a weak discontinuity in order to assess 

the differences in the precision of such integration strategies, taking as the reference numerical solution that 

obtained using sub-elements. 

This work is organized in four sections. This introduction, section 2 where it is shortly described the main 

aspects of the integration with triangular sub-elements and the integration using equivalent polynomials. The 

numerical results are presented in section 3 and section 4 our conclusions.  

2  Numerical integration in XFEM 

The approximation field in XFEM can be written as 

 
11

( ) ( ) ( ) ( )
n m

i i j j

ji

N N 

==

= + u x x u x x a  (1) 

where ( )u x  is the displacement vector, n  is the set of nodal points, ( )iN x  are the standard FEM shape functions, 

( )jN 
x  are the enrichment shape function, iu  is the degree of freedom associated with the standard FEM shape 

function, ja  is the degree of freedom associated with the enrichment function, ( ) x is the so called enrichment 

function, and  m  is the number of enriched nodes. 

For weak discontinuities, discontinuities related to bi-material interfaces in the domain, enrichment functions 

are used through the Level Set method (LSM), Pathak, A. Singh, and I. Singh [8]. The Level set Method is used 

to represent the interface geometry implicitly. This method represents the interface by an implicit function in the 

domain, in this way the interface is defined as the zero of the function and having one dimension less than the 

geometric domain. 

Let   by a domain divided by an interface d  into the subdomains A  and  B . The level set function 

used is the so-called signed-distance function, which is defined by the representation of the interface position, 

according to  

 
*

* *( ) min sign( ( ))
d

d

 


= −  −
x

x x x n x x  (2) 

 where x , *
x  is a point on the interface defined as the orthogonal projection of x  to the interface d , 

d
n is 

the normal vector to the interface d  , and  
*−x x  is the distance from  x  to *

x   given by the Euclidian norm, 

that is, the distance from x  to the interface. 

2.1 Integration by triangular sub-elements 

The triangularization of elements crossed by a discontinuity is one of the most used rules in XFEM. It consists 

of dividing the element into small triangles and applying the Gauss rules within the sub-element. The triangular 

sub-elements are easily obtained for convex regions using the Delaunay triangularization.   

In order to avoid a massive use of sub-elements, and then improve the inputs to the Delaunay triangularization 

algorithm, one can work with few sub-elements but augment the number of integration points, although it is 

reported that the computation cost is higher for the last case to achieve the same level of precision in comparison 
to the use of more sub-elements [4]. 

Given an element with a crossing interface, what is the case of interest of this study, the division into 

triangular sub-elements follows as presented in Fig. 1. Given the Delaunay triangularization knowing each sub-

triangle coordinate vertex ix  at the Cartesian plane ( , )x y  and knowing the Gauss integration quadrature in the 

parametric system ( , )r s , the coordinates of the integrations points can be easily determined in the Cartesian plane 

by the use of the shape functions of the triangular element, also known as the Constant Strain Triangle (CST), by 

 
2 1 3 1 1

2 1 3 1 1

( ) ( ) .

( ) ( ) .

x x x r x x s x

y y y r y y s y

= − + − +

= − + − +
 (3) 
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Figure 1. Decomposition of a quadrilateral element crossed by and interface in triangular sub-elements.  

The Jacobian Matrix of such transformation is given by 
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 (4) 

Once the integration points in the Cartesian plane were known, it was necessary to transform these points for 

the parametric system ( , )   of the quadrilateral element. The mapping from local coordinates ( , )   to the 

Cartesian plane ( , )x y  follows the equation 

 ( , )i i

i

N x =x . (5) 

The inverse of this mapping, ( , ) ( , )x y  → , is not simple because it involves a nonlinear system of 

equations that cannot be obtained analytically, so a numerical approximation is necessary. There are several ways 

to solve this problem. In this paper, we have implemented the method proposed by Murti and Valliappan [9]. 

In Murti and Valliappan [9] the iteration procedure to determine the inverse mapping has been improved by 

the intersection of a defined line that passes through a point M , defined at the interior of the element, whose 

Cartesian coordinates are 
mx , and a point P  whose the local parametric coordinate pξ  is known, such that a node 

of the vertex of the element. 

For this characterization, the point M  is assumed to be the Gauss point that need to be determined in terms 

of the parametric coordinates 
mξ , corresponding to the point 'M  in Fig. 2. 

 

Figure 2. The schematization of the method proposed by Murti and Valliappan [9]. 

 

The segment PQ  in the Cartesian plane can be easily determined by the linear equation of the line passing 

by the points P  and M . This segment is associated with the curve ' 'P Q  on the local coordinate plane and 

passing through the point 'M . Thus, the coordinate of the point 'M , mξ , can be determined more efficiently 

when compared to a numerical method without any improvement condition. 

To determine the point 'M  on the curve ' 'P Q  the false position method was employed, Lim et al. [10]. In 

Murti and Valliappan [9] the authors have used the bisection method, but the number of iterations for this method 

was higher. 

The point P  cannot be any vertex of the element. It must be chosen so that the curve ' 'P Q  be defined in 

the element, that is, it must cover the entire axis   at the interval [ 1, 1]− + . In the present work, when this occurs, 
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the point P  is redefined as the vertex opposite to the previous one, while in Murti and Valliappan [9]  the authors 

choose to renumber the element nodes, so there is a transformation of the axis   to  . 

Mathematically, the first step was to determine the line containing the segment PQ , that is 

 PQ y ax c = + . (6) 

in which ( ) ( )/m p m pa y y x x= − −  and p pc y ax= − . Rearranging eq. (6) yields 

 ( )i i i iN y a N x c= + . (7) 

Or, as the system  

 
( ) 0

0

i i i

i i

N y ax c

N c

− − =

− =
. (8) 

As 
i and c  are constants for the points M and P , eq. (8) can be reorganized accordingly to  

 2 0A B C + + = . (9) 

The coefficients A, B, and C are functions of  ( , , )i c  . Therefore, these coefficients vary with the number 

of the nodes of the quadrilateral element. For the quadrilateral element of 4 nodes such coefficients are. 

 0A= . (10) 

 ( ) ( ) ( ) ( )( )
1

2 1 1 3 4 1
4

B      = − − + − + . (11) 

 ( ) ( ) ( ) ( )( )
1

1 2 1 3 4 1
4

C c     = − + − + + + + − . (12) 

Only one root of the eq. (9) is the solution. It is determined when, at the iteration n , one gets satisfied for the 

tolerance  
n : 

 ( )n

n m i mN  −x ξ . (13) 

Once the integration points are obtained on the parametric system ( , )   The stiffness matrix can be 

integrated into each triangular sub-element using. 

 
1Ω sub-e

det[ ] ] Ω det[ ] ]
n

sub e sub e i sub e

i

J d w J− − −

=
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T T

K [B [D][B] [B [D][B] . (14) 

where n  is the number of integration points, 
iw  is weight. The matrices [B]  and [D]  are depending on the 

variables   and  , and are integrated at the points ( , )i i  , which are the Gauss points of the triangular sub-

element transformed to this coordinate system. 

The element stiffness matrix eK  is the sum of the sub-elements stiffness matrices sub e−K , that is,  

 
1

nk

e sub e

sub

−

=

K = K . (15) 

where nk  is the total number of the sub-elements of the element e . 

2.2 Integration by equivalent polynomials. 

Let us rewrite eq. (1) as 

 
11
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i i j j
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= + u x x u x x a . (16) 
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where ( ) x  is the signed distance function. 

In the matrix format with 
ef  denoting the enrichment function 

 
ef= +e eu Nu N a . (17) 

The enrichment function ( ) x is the Level Set function, and the displacement becomes 

 ( ) ( ( ) )j = + −
e e e

u Nu x Na N x I a  (18) 

in which ( )j x I  is the Level Set function at the nodes of the elements and I the identity matrix. 

The strain field as the following format 

 ( ) ( ( ) ) ( ( ) )j  = + +  −
e e e e

ε Bu x Ba x Na B x I a , (19) 

and the stress can be computed, for linear elastic isotropic materials, using the constitutive relation σ = Eε . The 

internal virtual work of an element is determined by 

 
e e

T Td diL
 

=  =  σ Eεε ε . (20) 

By introducing eq. (19) in eq. (20) one writes 

e

T T T T T T( ( ) ( ( ) )) ( ( ) ( ) )dT T

i

T TL HH H H 


= + + − + + − e e e e e e e eu B a B a N a B E Bu Ba Na B aFE E F . (21) 

in which, we have used the following notation to simplify the writing: ( ) x  by H  , ( )  x  by HE  and 

( )j x I  by the symbol F . Expanding eq. (21) one gets the stiffness matrix  

T T T T
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 (22) 

The constitutive matrix for a bi-material body can be written as  

 H 
m

E = E + (x) E . (23) 

in which 
1

( )
2

=
m

E E1+ E2  and 
1

( )
2

 = −E E1 E2 . By substituting eq. (23) in eq. (22) it is possible to write the 

element stiffness matrix eK  as the contribution of two parts. 

The special functions are separated in two categories, continuous and continuous by parts in Tab. 1. 

Table 1. Continuity of integration functions for material discontinuity 

Continuous and differentiable Continuous and differentiable by parts 
2H  H  

  H  
2  3H  

2H   3H   
22H   23H   

Replacing the equivalent polynomials H  by Heaviside function H  and Q  by the ramp function module, 

H , in the discontinuous, the stiffness matrix is obtained with continuous terms 
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           (24) 

The procedure for calculating the polynomials and their coefficients is found in the work of Ventura [7], as 

well as the used distance function used which is based on the shape functions. Such function, for the bilinear 

quadrilateral element, is given by 

 
2 4 1

1
( , ) [(1 ) (1 ) ( ) ]

2
d d d      = + + + − + . (25) 

where
1d , 

2d , and 
4d  are the distances from the discontinuity line to the nodes of the element. 

3  Numerical results 

In order to establish a comparison between the different types of integration presented here, it was decided 

to use the result of the integration with the sub-element technique as the reference solution and then to compare 

the standard Gaussian integration with the integration with equivalent polynomials. For this, the model problem 

of a Bi-material bar under tension modeled by plane elements with an interface, see Fig. 3. The dimensions are 

L=20cm, Young modulus E=2x106 kg/cm², Poisson ratio v=0.3, for the material to the left of the interface and 

0.5E and v for the material to the right, the tensile load q=2x104 kg/cm. This figure also shows the tilt in the 

interface used to assess the capacity of the integration of each method.  

The material interface 1 has coordinates (30,-10) and (30,10), the interface 2 (25,-10) and (35,-10), and the 

interface 3 (25,-10) and (37.5, 10). This problem with material interface 1 is presented in Khoei [11]. 

The displacements were calculated for each of the integration techniques, and then the relative errors as 

 .i subelemento i

i subelemento

u u
e

u

−

−

−
=  (26) 

where i subelementou −  is the displacement obtained with the integration by triangular sub-elements, iu  is (in turns) the 

displacement obtained by the standard Gauss method and by the method with equivalent polynomials. 

The compared displacements correspond to the largest displacement that occurs in the structure, horizontal 

of the node 6, that is, 
6y

u . In the standard Gauss integration and in the integration with equivalent polynomials, 

16 Gauss points were used, while in the integration with sub-elements 8 triangular sub-elements with 6 Gauss 

points each were used. Tab. 2 shows the relative errors for each case. 

Figure 3. Bi-material bar under tension modeled by plane elements with an interface. 
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Table 2. Quadrature error for standard method and equivalent polynomial for the 
6y

u . 

interface Gauss standard Equivalent polynomial 

1 0.13 0.00 

2 0.27 0.27 

3 1.08 0.53 

4  Conclusions 

Three numerical integration techniques were used and compared. From the results obtained, integration with 

equivalent polynomials showed the smallest error compared to the standard Gaussian quadrature. Integration with 

triangular sub-elements was used as a reference because it is the most commonly used integration in XFEM. 

However, it is necessary to continue research and implement integration with equivalent polynomials for distorted 

elements. 
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