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Abstract. This article uses the Lagrangian numerical method SPH (Smoothed Particle Hydrodynamics) to solve
the Stokes-Couette flow. The laminar flow is created by horizontal oscillation of the lower plate while the upper
plate remains stationary. Stokes-Couette flow can be used as a benchmark to test codes using the meshfree SPH
method since this phenomenon is governed by the one-dimensional classical heat equation. The newtonian fluid
domain between the flat plates is discretized by particles in a vertical column, which would be free to move
according to the forces acting on the particles. Boundary conditions are treated with ghost particles, created outside
the physical domain to keep the number of neighbors of each particle constant. The initial condition considers the
fluid at rest. The heat equation is then solved for each particle inside the domain and the horizontal velocity profile
is obtained from the integration over time. The variation in time of the velocity profile from the oscillatory point of
view (non-zero oscillation frequency) and the evolution in time of the velocity profile (zero oscillation frequency)
are evaluated. The numerical solution of the SPH method reproduces the Stokes-Couette flow, which can be used
as a benchmark for more complex SPH-based codes.
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1 Introduction

Numerical methods are useful tools for researchers and scientists, solving problems for which analytical
solution is difficult to obtain or unavailable. A part of traditional numerical methods applied to problems in fluid
dynamics, such as the Finite Difference Method (FDM), is based on an Eulerian approach to the equations of
mass, linear momentum and energy [1]. In addition, such numerical methods require a mesh to discretize the fluid
domain.

The SPH (Smoothed Particle Hydrodynamics) method does not seem to be suitable for solving simple prob-
lems when compared to traditional numerical methods, even when the conservation equations are written in the
Lagrangian approach. However, the SPH has several advantages, notably associated with the simulation of free
surface flows, such as the representation of large displacement phenomena, such as breaking waves; the absence
of numerical diffusion due to the discretization of the convective term of the linear momentum equation; and dis-
regarding the boundary condition on the free surface, or even its detection. The SPH has negative points, such as
the treatment of boundary conditions close to solid borders [2] and the efficient search of the neighborhood of the
particles [3]. These difficulties may prevent new users from studying the SPH method.

Thus, this article elucidate the main points in the implementation of a SPH code using the Stokes-Couette
flow as a study case.

2 Stokes-Couette flow

The one-dimensional Stokes-Couette flow is generated by the oscillation of a flat plate. A newtonian fluid is
considered between two flat, parallel, horizontal and infinite plates, separated by a distanceH , with the lower plate

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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oscillating at a constant frequency ω, while the upper plate remains at rest. Figure 1a illustrates the flow described.

Figure 1. a) Description of the Stokes-Couette flow and b) distribuition of the particles in the y direction and
illustration of the neighborhood of the particle i

The application of the Navier-Stokes equation for the Stokes-Couette flow in the x direction, disregarding the
pressure gradient ∂p/∂x, results in:

∂vx
∂t

= ν
∂2vx
∂y2

, (1)

where vx is the linear velocity in the x direction [m/s] and ν is the kinematic viscosity of the fluid [m2/s]. The
boundary conditions of eq. (1) are vx(0, t) = U cos (ω t) and vx(H, t) = 0 and the initial condition is vx(y, 0) = 0.

If ω 6= 0, the analytical solution of eq. (1) is given by:

vx(y, t) =
U

2 (cosh(2λH)− cos(2λH))
[exp (−λ (y − 2H)) cos(ω t− λ y) + . . .

· · ·+ exp (λ (y − 2H)) cos(ω t+ λ y)− exp (−λ y) cos(ω t− λ y + 2λH)− . . .
· · · − exp (λ y) cos(ω t+ λ y − 2λH)] , (2)

where U is the maximum amplitude of the velocity of the oscillating plate [m/s] and λ =
√
ω/(2 ν). The analytical

solution of eq. (1) for ω = 0 is:

vx(y, t) =
U (H − y)

H
−
∞∑

n=1

2U

nπ
sin
(nπ y
H

)
exp

(
−ν n

2 π2 t

H2

)
. (3)

Equation (2) e (3) are used to compare the analytical solution with the numerical one, presented by the
implemented SPH method, described in the section 3.

3 SPH

The SPH method approximates any field φ(~r) by a convolution of φ(~r) with the Dirac delta function. The
SPH method replace the Dirac delta function with a kernel, which has some characteristics of the Dirac delta
function such as the integral over the entire domain equal to one [4]. The kernel W is a scalar function and
depends on the relative distance between particles and on the smoothing length h. Therefore, the notation W =
W (|yi − yj |, h) = W (rij , h) = Wij is used, where yi is the vertical position of the particle i.

Figure 1b illustrates the value of the kernel for the neighboring j particles of the i particle through the color
gradient. The kernel used is given by the one-dimensional cubic spline [5], given by:
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W (s) =
2

3h


1− 3

2s
2 + 3

4s
3, if s < 1,

1
4 (2− s)3, if 1 ≤ s < 2,

0, if s ≥ 2,

(4)

with s = rij/h.
Written according to the SPH method, eq. (1) is:

d vx, i
dt

=
∑
j 6=i

2mj ν

ρj

vx, ij yij
r2ij + (0, 01h)2

dWij

dr
, (5)

where mj represents the mass of the particle j [kg], ρj is the density of the particle j [kg/m], vx, ij = vx, i − vx, j ,
yij = yi − yj , dWij/dr is the derivative of the kernel (eq. (4)) with respect to r.

Equation (5) is adapted from [6] and takes advantage of the fact that the convective term of eq. (1) is null,
matching the total derivative with the partial derivative. In eq. (5) the density and kinematic viscosity are considered
constant for all fluid particles. Finally, the summation term of eq. (5) is on the neighboring particles of particle i.

The particles allocated do not move vertically in the Stokes-Couette flow. The determination of the neighbor-
hood becomes simpler and does not need to be updated every time. Therefore, it is verified if the relative distance
between particles is less than 2h, that is: rij ≤ 2h.

The fluid particles are created with a distance ∆y between them and a distance of ∆y/2 between the plates
and the nearest fluid particle. Ghost particles (Fig. 1b) are created to complete the domain and avoid problems
associated with the lack of neighboring particles at the end of the domain. The number of ghost particles created
depends on the kernel and h. The velocities of the ghost particles created are called vpi(t), where i = 1 for ghost
particles on the upper plate and i = 2 for the ghost particles near the lower plate. The velocities of ghost particle
are calculated ensuring the boundary conditions, which are written in terms of the SPH method:

0 =

∑
j mj vx,j W (yj , h)/ρj∑

j mj W (yj , h)/ρj
and U cos (ω t) =

∑
j mj vx,j W (yj , h)/ρj∑

j mj W (yj , h)/ρj
, (6)

whereas zero order correction is applied to the W kernel, or Shepard correction [7]. The sums in the boundary
conditions expressed in eq. (6) refer to the set of particles close to the fixed and oscillating plates. Assuming that
the velocities of all ghost particles near the oscillating plate are equal and imposing y = H on eq. (6), vp1(t) is:

vp1(t) = −vx,N W (0, 5 ∆y, h) + vx,N−1W (1, 5 ∆y, h)

W (0, 5 ∆y, h) +W (1, 5 ∆y, h)
, (7)

where vx,N and vx,N−1 are the velocities of the real particle closest to the fixed plate. On the other hand, if y = 0,
vp2(t) becomes:

vp2(t) = 2U cos (ω t)− vx, 1W (0, 5 ∆y, h) + vx, 2W (1, 5 ∆y, h)

W (0, 5 ∆y, h) +W (1, 5 ∆y, h)
, (8)

where vx, 1 and vx, 2 are the velocities of the first and second real particles, respectively. Equation 7 shows that the
velocity of ghost particles vp(t) needs to be updated at each time step ∆t, even if ω = 0. The time step chosen for
the simulations is ∆t = 0.1h2/ν.

The 2nd order Runge-Kutta integration method is used to obtain the horizontal velocity of the particles.
Finally, a simple explicit finite differences numerical method [1] is used to compare the velocity profiles, in addition
to the eq. (2) and (3).

4 Results and discussion

The analysis of the Stokes-Couette flow starts from a discretization of the fluid domain of N = 25 particles
distributed vertically, with a distance between the plates of H = 0.1 m, resulting in a space between particles of
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Foz do Iguaçu/PR, Brazil, November 16-19, 2020



Numerical implementation of the Stokes-Couette flow

∆y = 0.004 m. The smoothing length used (eq. (4)) is h = 1.2 ∆y and the maximum search length is 2h, which
leads to the creation of four additional ghost particles, two external to each plate (Fig. 1b). The maximum speed is
U = 0.1 m/s and the oscillation frequency of the oscillating plate is ω = 100 rad/s. The Reynolds number of the
chosen flow is Rey = 1, resulting in a fluid kinematic viscosity of ν = 0.01 m2/s, constant for all particles. The
mass and density values of the particles result in m/ρ = ∆y = 0.004 m. The time step is ∆t = 2.3 · 10−4.

By starting from rest, the numerical solutions are compared with the analytical solution (eq. (2)) after com-
pleting an oscillation period. The analyzed times are then greater than 273 ∆t. The Fig. 2 illustrate the speed
profile obtained for four different times: 300 ∆t, 350 ∆t, 400 ∆t, and 450 ∆t.

(a) t = 300∆t. (b) t = 350∆t.

(c) t = 400∆t. (d) t = 450∆t.

Figure 2. Comparison between dimensionless velocity profiles for Stokes-Couette flow with ω = 100 rad/s

It can be seen in Fig. 2 that the boundary conditions for the velocity of the ghost particles (eq. (7) and (8))
correctly reproduce the expected values when compared with the analytical and FDM solutions.

Changing the oscillation frequency to ω = 0 and considering 20 terms of the analytical solution, four different
simulation times are analyzed: 15 ∆t, 50 ∆t, 200 ∆t, and 900 ∆t. The results can be seen at Fig. 3.

The velocity profile given by the SPH method reproduces the analytical one at all times analyzed and tends
towards the permanent solution, as expected.

5 Conclusion

The Stokes-Couette flow solution using the SPH is detailed in this article. The SPH numerical method starts
directly from the discretization of the heat equation (eq. (1)), using an approximation of the second derivative in
SPH (adapted from [6]). The boundary conditions for the horizontal velocity, which follow the no-slip condition,
must update the velocities of the ghost particles in each time step, even when ω = 0. However, the implementation
of the SPH method is simple and can be used in other 1D problems.

CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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(a) t = 15∆t. (b) t = 50∆t.

(c) t = 200∆t. (d) t = 900∆t.

Figure 3. Comparison between dimensionless velocity profiles for Stokes-Couette flow with ω = 0

References

[1] Fortuna, A. O., 2012. Técnicas Computacionais para Dinâmica dos Fluidos: Conceitos Básicos e Aplicações.
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