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Abstract. Cancer is a group of diseases characterized by complex phenomena across multiple temporal and spa-
tial scales. Comprehending its growth dynamics is a challenge and may improve the understanding of underlying
mechanisms, and suggests more effective therapy protocols. In this context, mathematical and computational
modeling may provide insights into tumorigenesis, cancer growth, and response to drug treatments. In this work,
we develop a hybrid discrete-continuum model describing the avascular phase of cancer growth and incorporate
chemotherapeutic drugs acting in different phases of the cell cycle. The growth phenomenon occurs at three scales:
(i) at the tissue scale, partial differential equations model oxygen, drug, and growth factor dispersion; (ii) at the
cellular scale, an agent-based model describes transitions among phenotypic states of each tumor cell and mechan-
ical interactions among cells and the microenvironment; (iii) at the molecular level, ordinary differential equations
represent signaling pathways that regulate cellular metabolism, cell cycle, and cell proliferation. Computational
experiments demonstrate that the proposed modeling framework can be instrumental in the development of inno-
vative new treatments for cancer patients.
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1 Introduction

The study of a complex biological phenomenon like cancer requires dealing with different interconnected
spatial and temporal scales. The dispersion of oxygen and growth factors at the tissue scale, for example, directly
or indirectly affects the phenomena that occur at the cellular and molecular levels. Similarly, biochemical reactions
within cells impact the metabolism of cellular and tissue levels. From a modeling point of view, this multiscale
nature of cancer reinforces the use of multiscale models to provide a closer representation of the real problem
[1]. At various time and space scales, mathematical and computational models can be divided into continuous and
discrete (based on individuals) models. Tumor continuous models allow a broader view of tumor burden growth
and are generally described by differential equations. On the other hand, discrete models allow to track individual
characteristics of each tumor cell and are often represented by cellular automata or agent-based models (ABMs)
[2]. A model that combines both continuous and discrete approaches is called a hybrid model.

In this work, we develop a two-dimensional hybrid multiscale model that integrates features present in two
tumor growth models [3, 4]. Rocha et al. [3] built a hybrid discrete-continuous model encompassing tissue, cellular,
and subcellular scales. At the tissue scale, they considered the dispersion of oxygen and growth factors in the
microenvironment; at the cellular level, they described the dynamics of normal and tumor cells; at the subcellular
level, each tumor cell is integrated into an epidermal growth factor receptor (EGFR) signaling pathway. Powathil
et al. [4] also proposed a hybrid multiscale approach. In their model, each tumor cell cycle is modeled, allowing to
identify cell phases and thus to analyze the effects of cell cycle-specific chemotherapeutic drugs. Our developed
model is used to perform in silico experiments in which we investigate the effects of two cytotoxic drugs on the
behavior of tumor cells.

The remainder of the paper is organized as follows. Section 2 details the model characteristics and the
resolution methods. Section 3 presents and discusses the results of the in silico experiments. Section 4 outlines
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some final remarks and future perspectives.

2 Materials and Methods

In our model, an ABM describes the behavior and mechanical interactions among the cellular scale con-
stituents. The agents can symbolize normal cells, tumor cells, or a pre-existing network of blood vessel cross-
sections. Of note, the present contribution deals with the avascular phase of tumor development in which we
assume normal cells in homeostasis. In contrast, tumor cells are differentiated into several phenotypic states, in-
cluding quiescent, proliferative, hypoxic, necrotic, apoptotic, and killed by chemotherapy. At the tissue scale,
the epidermal growth factor (EGF) released by quiescent cells, oxygen, and chemotherapeutic drugs released by
blood vessels disperse in the microenvironment, whose concentrations are modeled by using partial differential
equations (PDEs). EGF binds to the corresponding receptor (EGFR) at each cell surface and triggers a cascade
of biochemical reactions within the cell. This EGFR pathway is upregulated in many cancers and is known to
modulate a variety of cell responses, including cell proliferation. Oxygen, in turn, provides energy to keep cell
metabolism working. Chemotherapeutic drugs are responsible for drug-induced death of part of the tumor cells.
Tumor cells are also associated with a signaling pathway that governs the cell cycle. We model each signaling
pathway by a system of ordinary differential equations (ODEs). Figure 1 illustrates a schematic representation of
the main components of our hybrid multiscale model and their connections.
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Figure 1. Schematic representation of the hybrid multiscale model developed.

2.1 The Tissue Scale

At the macroscopic scale, we consider the dispersion of EGF (released by quiescent cells), oxygen, and
chemotherapeutic drug (released by blood vessels) concentrations through reaction-diffusion PDEs. The reaction
terms act as connections between the cellular and tissue scales through a homogenization process [3]. Since we
kept the EGF dispersion model and parameter values as described in Rocha et al. [3], we refer the reader to this
paper for more information.

The dynamics of oxygen concentration (K(x, t)) in the tumor microenvironment is expressed by [4]:

∂K(x, t)

∂t
= ∇ · (DK∇K(x, t)) + rK − φKK(x, t), (1)

with homogeneous Neumann boundary conditions and null initial condition. In Equation (1), DK is the diffusion
coefficient, rK is the oxygen production rate by blood vessels, and φK is the oxygen consumption rate, denoted
by φKb

, for normal cells; or φKt
, for living tumor cells. As the tumor grows, there is an imbalance between

oxygen production and consumption, decreasing its availability. This yields the upregulation of the hypoxia-
inducible transcription factor-1 ([HIF]), which modulates the cell cycle length. Specifically, [HIF] ultimately
controls oxygen availability in the cell cycle pathway (see Equation (3)), with [HIF] set equal to one where the
oxygen concentration is less than a threshold K, and equal to zero otherwise.

In this work, we consider possible combination of two chemotherapy medications used to treat a number of
cancers: cisplatin (c) and taxotere (t). The diffusion of the ith drug concentration, denoted by Ci(x, t), i = c, t, in
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the tumor microenvironment is given by [4]:

∂Ci(x, t)

∂t
= ∇ · (DCi

∇Ci(x, t)) + rCi
− ηCi

Ci(x, t), i = c, t , (2)

with homogeneous Neumann boundary conditions and null initial condition. In Equation (2), DCi
, rCi

, and ηCi

are the diffusion coefficient, supply rate by blood vessels, and decay rate of the ith chemotherapeutic drug. If the
drug concentration uptaken by the cell is greater than a threshold (C) and if the cell is in the correct phase of the
cell cycle, then there is a non-zero probability that the cell will be killed by chemotherapy (see Equation (9)). The
parameter values used in the dispersion models are shown in Table 1.

Table 1. Parameter values of the oxygen and chemotherapeutic drug models.

Parameter Meaning Value Unit Reference

DK Oxygen diffusion coefficient 4.5× 105 µm2h−1 [4]

rK Oxygen production rate by blood vessels 29.52 mols h−1 [4]

φKt Oxygen uptake rate by tumor cells 720.0 h−1 [4]

φKb
Oxygen uptake rate by healthy cells 0.01φKt h−1 [5]

K Hypoxic threshold 0.1 – [4]

DCc
Cisplatin diffusion coefficient 1.71× 105 µm2h−1 [4]

DCt Taxotere diffusion coefficient 4.5× 104 µm2h−1 [4]

rCi Drug supply rate by blood vessels 81.281 – [6]

ηCc
Cisplatin decay rate 1.316 h−1 [4]

ηCt
Taxotere decay rate 0.05634 h−1 [4]

C Cell death threshold 0.18 – [6]

2.2 The Molecular Scale

At the molecular level, we model two cascades of biochemical reactions in each tumor cell: the EGFR and
cell cycle pathways. The EGFR pathway is upregulated in many cancers and can be mathematically modeled
by a system of 20 ODEs (see Rocha et al. [3] for a complete description). Among all the molecules involved
in this process, the molecules ERK (extracellular signal-regulated kinase) and PLCγ (phospholipase C-gamma)
play fundamental roles in the cell proliferation process. If the variations in the PLCγ and ERK concentrations
along time are less and greater than two thresholds (TPLC and TERK), respectively, the quiescent cell acquires a
proliferative advantage.

The cell cycle model in each tumor cell encompasses interactions among the concentrations of six compo-
nents, denoted under brackets, and is given by the following system of ODEs [4]:

d[CycB]
dt

= k1 − (k
′

2 + k
′′

2 [Cdh1] + [p27/p21][HIF])[CycB], (3)

d[Cdh1]
dt

=
(k
′

3 + k
′′

3 [p55cdcA])(1− [Cdh1])
J3 + 1− [Cdh1]

− k4[mass][CycB][Cdh1]
J4 + [Cdh1]

, (4)

d[p55cdcT]
dt

= k
′

5 + k
′′

5

([CycB][mass])n

Jn5 + ([CycB][mass])n
− k6[p55cdcT], (5)

d[p55cdcA]
dt

=
k7[Plk1]([p55cdcT]− [p55cdcA])
J7 + [p55cdcT]− [p55cdcA]

− k8[Mad][p55cdcA]
J8 + [p55cdcA]

− k6[p55cdcA], (6)

d[Plk1]
dt

= k9[mass][CycB](1− [Plk1])− k10[Plk1], (7)

d[mass]
dt

= µ[mass]
(

1− [mass]
m∗

)
. (8)

When the CycB concentration exceeds a threshold [CycB], the cell division process begins, and the cell mass is
halved. The initial conditions and the parameter values used in this model are shown in Table 2, and a complete
description of the parameters can be found in Powathil et al. [4].
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Table 2. Initial conditions and parameter values of the cell cycle model [4].

Component Meaning Initial condition Rate constants (h−1) Dimensioless constants

[CycB] Cdk-cyclin B complex 0.094
k1 = 0.12, k

′

2 = 0.12,
k
′′

2 = 4.5, [p27/p21] = 1.05
[CycB] = 0.1

[Cdh1] APC-Cdh1 complex 0.998 k
′

3 = 3, k
′′

3 = 30, k4 = 105 J3 = 0.04, J4 = 0.04

[p55cdcT] Total p55cdc-APC complex 0.998 k
′

5 = 0.015, k
′′

5 = 0.6, k6 = 0.3 J5 = 0.3, n = 4

[p55cdcA] Active form of the p55cdc-APC complex 0.876 k7 = 3, k8 = 1.5 J7 = 0.001, J8 = 0.001, [Mad] = 1

[Plk1] Active form of the Plk1 protein 0.574 k9 = 0.3, k10 = 0.06 –

[mass] Cell mass 0.452
µ = µ+ + εµ̂,
µ+ = 0.03, µ̂ ∼ U [−1, 1]

m∗ = 10, ε = 0.006

2.3 The Cellular Scale

The cellular scale is represented by an agent-based model, which allows us to analyze each agent individually
and describe its behavior in the microenvironment. An agent can interact with other agents and the microenviron-
ment through different forces, which define the agent movement. We consider both healthy (normal) and cancer
cells, and a pre-existing set of blood vessel cross-sections as agents. We assume that these blood vessel cross-
sections are randomly distributed throughout the domain and remain spatially fixed during the simulation time.
Blood vessels act as sources of oxygen and are responsible for delivering chemotherapeutic drugs. Cell morphol-
ogy and properties are defined as in Rocha et al. [3]. Cell movement is governed by the balance of the following
forces among cells, the blood vessels, and the microenvironment: cell–cell adhesion and cell–cell repulsion forces,
blood vessel–cell adhesion and blood vessel–cell repulsion forces, compression and resistance to compression
forces, and drag force of interstitial fluid flow (see Rocha et al. [7] for details).

Normal cells are kept in homeostasis, uptaking a small percentage of the oxygen present in the microenvi-
ronment. Tumor cells are differentiated into seven phenotypic states: quiescent (Q), with positive proliferation
stimulus (P+), with negative proliferation stimulus (P−), hypoxic (H), necrotic (N ), apoptotic (A), and killed by
chemotherapy (K). Such phenotypic differentiation is driven by interactions with the microenvironment and with
other cells and intracellular regulatory responses. Transitions from quiescent (Q) to proliferative (P+) or apoptotic
(A) states and from proliferative (P+ and P−) to drug-induced death (K) state are stochastic and defined by the
following Poisson processes [3, 5], given a time interval ∆t:

P (P+|Q) = 1− exp (−αP∆t), αP (t) = αP

(
K−K
1−K

)
,

P (A|Q) = 1− exp (−αA∆t), αA = constant,

P (K|P+) = 1− exp (−αK+
∆t), αK+

(t) = αK+

(
Ct−C
1−C

)
,

P (K|P−) = 1− exp (−αK−∆t), αK−(t) = αK−

(
Cc−C
1−C

)
.

(9)

The biochemical reactions of the EGFR signaling pathway determine αP depending on [ERK] and [PLCγ] as well
as on the [CycB] from the cell cycle signaling pathway according to the following rule:

αP = 1, if
d[PLCγ]

dt
< TPLC,

d[ERK]
dt

> TERK, and [CycB] > [CycB] or αP = 0, otherwise. (10)

Similarly, parameters αK+ and αK− depend on the drug concentration uptaken by the cell from a minimum
quantity C accumulated by the cell according to the following rule:

αK+ = 1, if Ct(x, t) > C and S-G2-M-phase of the cell cycle or αK+ = 0, otherwise, (11)

αK− = 1, if Cc(x, t) > C and G1-phase of the cell cycle or αK− = 0, otherwise. (12)

Also notice that transitions from quiescent (Q) and proliferative (P+ and P−) to hypoxic (H) occur when the
oxygen availability in the microenvironment is less than the thresholdK. Eventually, hypoxic cells die and become
necrotic (N ). Other deterministic transitions depend only on the time elapsed from the state in which the cell is.
Figure 2 illustrates the color scheme used to represent agents and their transitions.

Remark: All PDEs and systems of ODEs are numerically solved using the finite difference and the fourth-order
Runge-Kutta methods [8], respectively. The discretization settings are chosen so that convergent solutions are
obtained.
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Figure 2. Schematic representation of normal cells, blood vessel cross-sections, and phenotypic differentiation of
tumor cells and their transitions.

3 Results and Discussions

In the numerical experiments, we consider a 500 × 500 µm2 computational domain for the tissue scale.
At the cellular scale, normal and tumor cells and blood vessel cross-sections are arranged in a circular domain
of radius equal to 250 µm inscribed in the macroscopic domain. The initial ABM condition consists of 759
agents: 32 blood vessel cross-sections, 723 normal cells, and four tumor cells (two quiescent cells and two cells
with positive proliferation stimulus) that are placed close to the center of the domain. In silico experiments are
performed up to the maximum time (tmax) of 700 h. To analyze the effects on the dynamics of the injection of
two chemotherapeutic drugs, in isolation, we conduct three experiments: the first one is the control experiment,
in which no drug is applied during the whole simulation time; in the second experiment, the chemotherapeutic
drug cisplatin, specific to the G1-phase of the cell cycle, is injected at t = 400 h; and in the last experiment, we
introduce the drug taxotere, specific to the S-G2-M-phases of the cell cycle, also at t = 400 h.

Figure 3 illustrates the dynamics of tumor growth without the application of chemotherapeutic drugs. Snap-
shots of one realization of the ABM are shown every 100 h, from t = 200 h to t = 700 h, using the color scheme
represented in Figure 2. Tumor cells, initially located in the center of the domain, begin to proliferate closer to
regions where there is greater oxygen availability (closer to the blood vessels). However, as the tumor grows, the
oxygen demand increases, followed by the consequent decrease in its availability. The onset of hypoxic cells is
around t = 200 h, and clusters of necrotic cells are well-formed at t = 300 h. The number of necrotic cells
significantly increases over time. At the final simulation time (tmax = 700 h), the tumor completely occupies the
circular domain. We also notice that the quiescent and proliferative cells are closer to the blood vessels; on the
other hand, necrotic cells are mostly arranged in other regions of the domain.

Figure 4 illustrates one realization of tumor dynamics subject to the injection of one dose of cisplatin at time
t = 400 h, which induces the death of tumor cells that have negative proliferation stimulus (P−). The drug effects
are seen at time t = 500 h when regions with no agents appear caused by death due to chemotherapy. However,
because cisplatin has a relatively high diffusion coefficient and decay rate, killing effects on tumor cells quickly
vanish. At the final simulation time, tumor cells proliferate again and occupy a large part of the circular domain.

Figure 5 illustrates one realization of tumor dynamics subject to the injection of one dose of taxotere at time
t = 400 h, which acts by killing tumor cells that have positive proliferation stimulus (P+). At time t = 500 h,
we can notice the existence of empty regions caused by cells killed by the chemotherapy. Since taxotere has a
lower diffusion coefficient and decay rate compared to cisplatin, the chemotherapy effect is kept until the final
simulation time (tmax = 700 h). At this time, only quiescent and necrotic tumor cells remain in the circular
domain, and the effects of the S-G2-M-specific drug prevent proliferation from quiescent cells. Thus, as long as
there is a considerable drug concentration in the microenvironment, tumor growth remains inactive. However,
since quiescent cells are living cells in a state of dormancy, the tumor evolution can be reestablished at a later time.

Figure 6 illustrates the time evolution of the number of tumor cells considering 10 realizations for each in
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Figure 3. Dynamics of tumor growth without application of chemotherapeutic drugs.
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Figure 4. Dynamics of tumor growth with application of the drug cisplatin in one dose.
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Figure 5. Dynamics of tumor growth with application of the drug taxotere in one dose.

silico experiment. We present the number of necrotic (N ), quiescent (Q), with positive proliferation stimulus (P+),
and with negative proliferation stimulus (P−) cells until the final simulation time. This figure provides another
view of the dynamics of tumor growth and shows the effectiveness of taxotere compared to cisplatin. While
with cisplatin an average of 300 quiescent cells remain in the computational domain at the end of the simulation,
chemotherapy with taxotere reduces this number to less than half and manages to eliminate proliferative tumor
cells.
CILAMCE 2020
Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.
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Figure 6. Mean evolution of the number of tumor cells and standard deviation over time.

4 Conclusion

The developed hybrid multiscale model integrates characteristics present at three scales: tissue, cellular, and
intracellular. The multiscale approach makes the tumor growth modeling biologically more relevant, providing
a better description of the phenomena separately. In addition, the modular framework of this approach allows
us to easily include and change features in the model. The in silico experiments carried out showed that the
injection of one dose of two different chemotherapeutic drugs, in isolation, is not able to completely eliminate
the tumor. In addition to the different forms of action on the cell cycle, drug diffusion coefficient and decay
rate also ultimately play an important role in chemotherapy effectiveness. Overall, the developed model allows
investigating the effects of phase-specific chemotherapeutic drugs, drug combinations, and different treatment
protocols. Although not shown, combination with targeted inhibitors, such as EGFR-inhibiting drugs, can be also
studied through simulations. In this way, it can be used as an initial platform for studying and incorporating specific
treatment features, such as drug resistance, targeted therapies, and optimal treatment control.
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